

Report on the Industrial Validation of
SecureChange Solutions

M. Angeli (UNITN), G. Bergmann (BME), P. Capelastegui (TID),
B. Chetali (GTO), O. Delande (TRT), M. Felici (DBL),
F. Innerhofer-Oberperfler (UIB), V. Meduri (DBL), F. Paci (UNITN),
S. Paul (TRT), B. Solhaug (SIN), A. Tedeschi (DBL)

Document information

Document Number D1.3

Document Title Report on the Industrial Validation of
SecureChange Solutions

Version 4.3

Status Final

Work Package WP 1

Deliverable Type Report

Contractual Date of Delivery 30/01/2012

Actual Date of Delivery

Responsible Unit DBL

Contributors BME, DBL, GTO, TID, TRT, UNITN

Keyword List Validation, Case Studies

Dissemination level PU

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 2 / 187

Document change record

Version Date Status Author (Unit) Description

0.1 23/06/2011 Draft
M. Felici, V. Meduri, A.
Tedeschi (DBL)

Initial document
structure

0.2 02/08/2011 Draft
M. Felici, V. Meduri, A.
Tedeschi (DBL)

Initial information
about the validation
methodology

0.3 07/10/2011 Draft
M. Felici, V. Meduri, A.
Tedeschi (DBL)

Initial structure of the
sections for the ATM
Case Study Validation
and related WPs

0.4 23/11/2011 Draft
M. Felici, V. Meduri
(DBL)

ATM WP2 Evaluation
Results

0.5 08/12/2011 Draft
M. Felici, V. Meduri
(DBL)

ATM WP3 Evaluation
Results

0.6 15/12/2011 Draft

M. Felici, V. Meduri
(DBL)
S. Paul, O. Delande
(TRT)

ATM WP4 Evaluation
Results

0.7 28/12/2011 Draft
M. Felici, V. Meduri
(DBL)

ATM WP5 Evaluation
Results

1.0 07/01/2012 Draft P. Capelastegui (TID)
HOMES Evaluation
Results

2.0 11/01/2012 Draft B. Chetali (GTO)
POPS Evaluation
Results

3.0 11/01/2011 Draft M. Felici (DBL)
Structured execuitive
summary

3.1 12/01/2012 Draft M. Felici (DBL)
Reviw of section
Validation Objectives

3.2 16/01/2012 Draft M. Felici (DBL) Review of Appendixes

3.3 17/01/2012 Draft M. Felici (DBL)
Review of
Conclusions and
Executive Summary

3.3 23/01/2012 Draft M. Angeli (UNITN)
First quality check
completed – minor
remarks

4.0 25/01/2012 Draft M. Felici (DBL)
Addressed first quality
check remarks

4.1 27/01/2012 Draft M. Felici (DBL)
Addressed comments
by WP partners

4.1 30/01/2012 Draft M. Angeli (UNITN)
Second quality check
completed – minor
remarks

4.3 30/01/2012 Final M. Felici (DBL)
Addressed second
quality check remarks

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 3 / 187

EXECUTIVE SUMMARY

This deliverable consists of the results of the validation including the evaluation of the
applicability in realistic industrial contexts, together with recommendations for the future
improvements and refinements of the project results.

The deliverable identifies and defines the validation strategy for the SecureChange final
results, with the identification of the validation objectives (Section 1 Validation
Objectives) for each WP and of the validation exercises and analyses of the related
outcomes. The validation analyses the final and consolidated project results. It
demonstrates that SecureChange artefacts can work efficiently in real life environments,
while addressing the problem for which they have been developed:

SecureChange’s objective is to develop techniques and tools that ensure
"lifelong" compliance to evolving security, privacy and dependability
requirements for a long-running evolving software system.

The validation has taken place in the final year of SecureChange and it has delivered and
influenced the research work in the last phase of the project lifecycle. The validation has
provided insights for future further improvements and refinements of the SecureChange
results. Particular attention has been given to the usability, of the project results, in real
industrial contexts captured by the three different case studies: ATM (Section 2 ATM CASE
STUDY), HOMES (Section 3 HOMES CASE STUDY) and POPS (Section 4 POPS CASE STUDY).
Moreover, the validation criteria also include the applicability in real life and specific
validation exercises designed to provide industrial feedback about essential aspects of the
project results.

The SecureChange validation identifies the validation objectives (Section 1 Validation
Objectives) with respect to the project outcomes (for each WP) and the way the validation
activities have been organised and carried out (in the final part of the project) in order to
address these objectives. Due to the complexity of validating diverse project outcomes,
the validation strategy has taken into account changes and subsequent contributions. As
natural consequence of the complexity of the SecureChange approach, tools and solutions
that will be the outcomes of each SecureChange work package can be significantly
different. Therefore, each work package has contributed to this document by designing,
planning and performing different validation activities, compliant with the characteristics
and scopes of the work package itself. The validation involves subsequent validation
activities that have been planned for each case study and for each WP (Appendixes B, F,
and H show the validation plans for the ATM, HOMES and POPS case studies, respectively).
The validation activities combined together highlight validation strategies and processes
tailored to the specific validation objectives and case studies.

Each work package has provided inputs for the final validation under the support and
coordination of DBL, as leader of T1.3 and responsible of the overall Validation of the
SecureChange results.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 4 / 187

SecureChange Overview

The main objective of SecureChange is to develop techniques and tools that ensure “lifelong”
compliance to security, privacy and dependability requirements for an evolving software
system. This is particularly challenging because these requirements are not necessarily
preserved by system evolution. The practical relevance of this research has been validated
against three challenging complex industrial domains, i.e. smart-cards, digital homes and
Air Traffic Management, which offer most research challenges and greatest long-term
business opportunities.

The complexity and the innovation of the proposed solutions make the process of
validating the results issued from this collective endeavour a very challenging task. Just as
the issues addressed by SecureChange are heterogeneous, so are the results expected for
each work package, ranging from an overall security architecture to specific methods and
algorithms for the evolution of secure software, from a set of working tools for the design,
implementation and verification of secure code, to purely conceptual frameworks and
meta-models. Therefore, it was necessary to perform different and customized validation
activities. Leaders of the technical work packages interacted and collaborated with the
leaders of the validation tasks in defining the evaluation and validation objectives (Section
1 Validation Objectives), criteria (as identified in D1.2 [3]) and methods for the work
package they have been responsible for, because of their awareness of the issues at stake
and the solutions developed within their work package. In order to identify realistic and
challenging validation criteria and to support collaborations among the technical work
packages and the industrial partners (to minimise the risk that each work package would
define its own criteria of success independently of the others partners with little or no
interaction within the SecureChange project), we used the real-world case-studies as
means for evaluating how SecureChange meets its main goals. Figure 1 stresses the critical
role of a proper, realistic and coordinated validation plan for a successful SecureChange
validation.

Figure 1 Work package 1 and other work packages

WP1 - Case Study

Requirements
WP 1 Applicability

Analysis

WP 1

Validation

WP2-WP7

M12

Models

Revised Models

Languages Rev. Lang.

Methodology

Rev. Method.

Mechanisms Rev. Mech.

Process

Rev. Process

Tools Revised Tools

Input for Evaluation

Technical Dependency

Industrial Feedback

WP2-WP7

WP2-WP7

M24 M36M0

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 5 / 187

In order to provide some guidance to the validation activities across the three different
case studies, we have identified a general and widely used Validation Process (Appendix
A). The Validation Process has been drawn from industry practices and it has been used
within the SecureChange project to guide and coordinate the different evaluation tasks.
Each work package interacted with one or more case studies, according to main scopes
and security characteristics of the case studies themselves. Table 1 summarises the
interactions among technical work packages and the case studies. These interactions have
contributed to the validation of the SecureChange outcomes. The validation results for
each work package are reported for the three case studies: ATM (Section 2 ATM CASE
STUDY), HOMES (Section 3 HOMES CASE STUDY) and POPS (Section 4 POPS CASE STUDY).

Table 1 Interaction among industrial case studies and technical work packages

 WP2 WP3 WP4 WP5 WP6 WP7

POPS X X X

HOMES X X X

ATM X X X X

Tools, techniques and methodologies developed by the work package have been to a
certain extent integrated and applied within the selected case study to specific scenarios
highlighting the peculiarities, innovation and applicability of the SecureChange outcomes
under validation. Therefore, the Validation of the SecureChange has been designed and
carried out by following a case-study-oriented structure.

Project Rationale and Results

System evolution has captured centre stage in software engineering research and practice
for good reasons. There is growing demand to continuously evolve systems to meet
changing business needs, new regulations and policies, novel technologies and computing
infrastructures. The main objective of SecureChange is to develop techniques and tools
that ensure “lifelong” compliance to security requirements for an evolving software
system. This is particularly challenging because these security requirements are not
necessarily preserved by system evolution. The project has focused on the challenging,
long term objective of rethinking processes and tools that support design techniques for
evolution, testing, verification, re-configuration and time deployment analysis of evolving
software.

SecureChange successful achievements consist of these tangible scientific and
technological results:

1. A specification of the SecureChange software design process based on meta-models.
This also includes the specification of a security architecture supporting the adaptable
configuration of security functionality on the basis of the concept of security as a
service.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 6 / 187

2. A series of methods and algorithms supporting the process at each step. These
methods provide mechanisms for:

a. Specifying code-level security properties in a light-weight way (via programming
models) in order to cope with changing vulnerability classes.

b. Verifying code that is loaded on a device in light of changing requirements or risk
models, computing impact of requirement evolution on already installed code, and
re-validating already installed code again new requirements.

c. Incrementally reacting to changes in requirement and design models.

d. Eliciting evolutionary requirements.

e. Specifying design-level models for evolutionary systems and their security
requirements and formally analyzing the models against the requirements.

3. A suite of software tools supporting SecureChange solutions:

a. A tool managing evolving, configurable and highly-interrelated services and their
security requirements at several levels of abstraction.

b. A tool for the automatic transformation of security requirements models into
security design models when requirements change or the automatic re-assessment
of requirements when design models and processes are changed.

c. A tool to automatically and formally verify design models of evolutionary systems
against evolutionary security requirements.

d. A tool for the verification of evolving security requirements and the automatic
transformation of security requirements models into security design models when
requirements change or the automatic re-assessment of satisfied or unsatisfied
security requirements when design models and processes are changed (i.e. in
process re-engineering).

e. A tool for automatic or interactive simulation of changes to the risk picture as a
function of executing changes in the underlying system description (with change
as a first class citizen).

f. A model-based testing tool prototype to automatically (re)generate the test
repository and automated test scripts according with property and requirements
evolutions, and managing the priority detected from risk analysis.

g. A tool to verify security properties of code that is annotated according to a
programming model.

h. A tool to automatically and formally verify design models of evolutionary systems
against evolutionary security requirements.

i. A tool to verify mobile code at loading time against flexible security requirements
and to detect the impact of new requirements on already installed code.

4. The industrial validation of the scientific and technological results has been done
in three case studies. The industrial validation involved:

a. A requirement and success criteria collection of the SecureChange case studies.
This includes a complete description and a detailed specification of security
requirements of each of the case studies.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 7 / 187

b. A process validation. This consists of validating that the lifelong development
cycle designed in SecureChange can be applied in industrial scenarios.

c. A final evaluation of the technologies. Technologies studied, developed or
improved during the project have been evaluated to validate its applicability to
industrial contexts.

Purpose of This Document

This document identifies and defines a validation strategy for the SecureChange final
results, with the identification of the validation objectives and of the validation exercise
validation and analysis of the related outcome. The SecureChange validation analyses the
final and consolidated version of the project results, so as to demonstrate that
SecureChange can comply with changes requirements and security features drawn from
industrial contexts, while addressing the problems for which it was developed. The
purpose of this document is to provide insights for future further improvements,
refinements and exploitations of the SecureChange results. Particular attention has been
paid to the usability of the project results in the selected industrial contexts. In particular,
the identified validation criteria include the applicability on validation exercises designed
to provide feedback about SecureChange objectives. This deliverable reports the results of
the validation including the evaluation of the applicability in realistic industrial contexts,
together with recommendations for the future improvements and refinements of the
project results.

Document Structure

The document organisation takes into account the interactions among the technical work
packages and the case studies. Section 1 identifies the Validation Objectives for each WP.
The validation criteria (identified in D1.2 [3]) have been reported together with validation
scenarios, exercises and results for each validation objective. This allowed us to identify
specific feedback for all SecureChange results. The remainder of the document is
organised per case study. Section 2 reports the validation activities and results of the WPs
that worked on the ATM CASE STUDY. Section 3 reports the validation activities and
results of the WPs that worked on the HOMES CASE STUDY. Section 4 reports the
validation activities and results of the WPs that worked on POPS CASE STUDY. Section 5
summarises the validation results. The Appendixes provide specific supporting material
(e.g. definitions, notations details of exercises). Three appendixes detailed the validation
plans adopted for the case studies with respect to the assessed WPs. Appendixes B, F, and
H show the validation plans for the ATM, HOMES and POPS case studies, respectively.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 8 / 187

TABLE OF CONTENTS

DOCUMENT INFORMATION .. 1

DOCUMENT CHANGE RECORD .. 2

EXECUTIVE SUMMARY.. 3

SecureChange Overview .. 4

Project Rationale and Results.. 5

Purpose of This Document ... 7

Document Structure .. 7

TABLE OF CONTENTS ... 8

1 VALIDATION OBJECTIVES ... 18

1.1 WP2 – Architecture and Design Process ... 18

1.2 WP3 – Requirements .. 19

1.3 WP4 – Model Design .. 20

1.4 WP5 – Risk Assessment .. 20

1.5 WP6 – Verification .. 21

1.6 WP7 – Testing ... 22

2 ATM CASE STUDY .. 23

2.1 VALIDATION ORGANISATION AND CONDUCT .. 23
2.1.1 HIGH–LEVEL OBJECTIVES ... 23

2.2 WP2 Architecture and Design Process .. 24
2.2.1 WP2 ARTEFACTS ... 24

2.2.1.1 Change Driven Security Engineering .. 25
VALIDATION SCENARIOS and EXERCISES ... 27
VALIDATION CRITERIA ... 29
VALIDATION RESULTS ... 29

2.2.1.2 MoVE Tool .. 31
VALIDATION SCENARIOS and EXERCISES ... 32
VALIDATION CRITERIA ... 32
VALIDATION RESULTS ... 33

2.2.2 Validation Remarks .. 35

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 9 / 187

2.3 WP3 Requirements ... 35
2.3.1 WP3 ARTEFACTS ... 35

2.3.1.1 SeCMER Methodology .. 36
VALIDATION SCENARIOS and EXERCISES ... 37
VALIDATION CRITERIA ... 41
VALIDATION RESULTS ... 42

2.3.1.2 SeCMER Tool ... 42
VALIDATION SCENARIOS and EXERCISES ... 43
VALIDATION CRITERIA ... 46
VALIDATION RESULTS ... 47

2.3.2 Validation Remarks .. 48

2.4 WP4 Model Design ... 48
2.4.1 WP4 ARTEFACTS ... 48

2.4.1.1 Integration of Design Modelling Solutions .. 48
VALIDATION SCENARIOS and EXERCISES ... 49
VALIDATION CRITERIA ... 50
VALIDATION RESULTS ... 51

2.4.2 Validation Remarks .. 51

2.5 WP5 Risk Assessment ... 52
2.5.1 WP5 ARTEFACTS ... 52

2.5.1.1 Risk Assessment Language and Methodology .. 56
VALIDATION SCENARIOS and EXERCISES ... 56
VALIDATION CRITERIA ... 56
VALIDATION RESULTS ... 58

2.5.1.2 Risk Modelling Tool .. 59
VALIDATION SCENARIOS and EXERCISES ... 59
VALIDATION CRITERIA ... 61
VALIDATION RESULTS ... 61

2.5.2 Validation Remarks .. 62

3 HOMES CASE STUDY ... 63

3.1 VALIDATION ORGANISATION AND CONDUCT .. 63
3.1.1 HIGH–LEVEL OBJECTIVES ... 63

3.2 WP2 Architecture and Design Process .. 64
3.2.1 WP2 ARTEFACTS ... 64

3.2.1.1 Security-As-A-Service (SeAAS) ... 64
VALIDATION SCENARIOS and EXERCISES ... 65
VALIDATION CRITERIA ... 65
VALIDATION RESULTS ... 67

3.2.1.2 Change Patterns ... 68
VALIDATION SCENARIOS and EXERCISES ... 69
VALIDATION CRITERIA ... 69
VALIDATION RESULTS ... 74

3.3 WP6 Verification ... 75
3.3.1 WP6 ARTEFACTS ... 75

3.3.1.1 VeriFast.. 75
VALIDATION SCENARIOS and EXERCISES ... 76
VALIDATION CRITERIA ... 76
VALIDATION RESULTS ... 80

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 10 / 187

3.3.1.2 Security-by-Contract (SxC) ... 82
VALIDATION SCENARIOS and EXERCISES ... 82
VALIDATION CRITERIA ... 83
VALIDATION RESULTS ... 86

3.4 WP7 Testing .. 88
3.4.1 WP7 ARTEFACTS ... 88

3.4.1.1 Telling Test Stories (TTS) ... 88
VALIDATION SCENARIOS and EXERCISES ... 88
VALIDATION CRITERIA ... 88
VALIDATION RESULTS ... 99

4 POPS CASE STUDY .. 102

4.1 Validation Organization and Conduct .. 102

4.2 High-level objectives .. 102

4.3 WP6 Verification ... 103
4.3.1 Development-time Verification of JC Applets .. 103

VALIDATION SCENARIOS and EXERCISES ... 103
VALIDATION CRITERIA ... 104
VALIDATION RESULTS ... 104

4.3.2 On-Device Verification ... 107
VALIDATION SCENARIOS and EXERCISES ... 107
VALIDATION CRITERIA ... 108
VALIDATION RESULTS ... 108

4.3.3 Conclusion on the Verification ... 111
4.3.3.1 Off-card Verification ... 111
4.3.3.2 On-device Verification .. 112

4.4 WP4 Model Design ... 113
4.4.1 UMLchange .. 113

VALIDATION SCENARIOS and EXERCISES ... 113
VALIDATION CRITERIA ... 113
VALIDATION RESULTS ... 113

4.5 WP7 Testing .. 114
4.5.1 Model-based Testing Tool ... 114

VALIDATION SCENARIOS and EXERCISES ... 114
VALIDATION CRITERIA ... 115
VALIDATION RESULTS ... 115

4.5.2 Conclusion on the Model-Based Testing ... 120

5 VALIDATION CONCLUSIONS ... 121

REFERENCES ... 123

APPENDIX ... 124

A. VALIDATION PROCESS .. 125

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 11 / 187

B. ATM VALIDATION PLAN ... 130

C. SECMER CONCEPTUAL MODEL ... 132

D. CORAS DEFINITIONS .. 134

E. ATM/WP4 MODEL DESIGN ... 135
Case Study Walkthrough .. 135
Iteration n°1: The system “as is” ... 138
Interation n°2: The system “to be” .. 162

F. HOMES VALIDATION PLAN ... 171

G. HOMES/WP2 CHANGE PATTERNS.. 173
Design and setup .. 173

Study phase .. 173
Setup phase .. 174
Execution phase... 174
Follow-up phase .. 174

Results ... 174
Learning curve ... 174
Methodology ... 175
Pattern catalog .. 175

Initial situation models ... 176
Assignment .. 178

Task .. 178
Scenario 1... 178
Scenario 2... 179

Questionnaire .. 180

H. POPS VALITATION PLAN ... 183

I. POPS DETAILS ON THE EVALUATION ACTIVITIES........................... 186

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 12 / 187

LIST OF FIGURES

Figure 1 Work package 1 and other work packages .. 4

Figure 2 ATM Validation .. 24

Figure 3 Collaboration support ... 25

Figure 4 Functional system meta model .. 26

Figure 5 Impact on business process view ... 27

Figure 6 Sample state machines for requirements changes .. 28

Figure 7 Sample models in an evaluated state again .. 28

Figure 8 Median score grouped for each criterion category .. 30

Figure 9 Median score for each evaluation criterion .. 30

Figure 10 Conceptual Architecture of the MoVE Tool .. 31

Figure 11 The MoVE Tool highlighting state changes .. 32

Figure 12 Screenshot of the MoVE Tool ... 33

Figure 13 Screenshot of the state machine change window .. 34

Figure 14 Median score grouped for each criterion category ... 35

Figure 15 Median score for each evaluation criterion ... 35

Figure 16 Overview of SeCMER ... 36

Figure 17 Alternative goal-oriented changes due to AMAN introduction 38

Figure 18 Modelling evolution as a set of rules .. 39

Figure 19 Example of requirements model .. 40

Figure 20 Example of security pattern ... 40

Figure 21 Example of argumentation analysis .. 40

Figure 22 Median score grouped for each criterion category ... 42

Figure 23 Median score for each evaluation criterion ... 42

Figure 24 Tree editor of the abstract model .. 43

Figure 25 Si* diagram on the Tropos tab ... 44

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 13 / 187

Figure 26 Argument diagram on the Argument tab .. 44

Figure 27 New SeCMER Model wizards ... 44

Figure 28 Detected security issues .. 45

Figure 29 Automatically suggested solutions .. 45

Figure 30 Selecting ground facts for an Argument .. 45

Figure 31 Detecting the invalidation of an argument ... 46

Figure 32 Median score grouped for each criterion category ... 48

Figure 33 Median score for each evaluation criterion ... 48

Figure 34 An engineering process for security-critical systems 49

Figure 35 A sample Si* model capturing system resources ... 49

Figure 36 A sample CORAS Risk Assessment model ... 50

Figure 37 Median score grouped for each criterion category ... 51

Figure 38 Main CORAS concepts ... 52

Figure 39 Risk evaluation criteria .. 53

Figure 40 Threat diagram with changing risks ... 54

Figure 41 Two views on changing risks ... 55

Figure 42 Median score grouped for each criterion category ... 58

Figure 43 Median score for each evaluation criterion ... 58

Figure 44 Median score grouped for each criterion category ... 58

Figure 45 Median score for each evaluation criterion ... 58

Figure 46 Safety Culture profile by median score .. 59

Figure 47 Evolutionary Risk Analysis ... 59

Figure 48 Sample screenshot of the CORAS tool .. 60

Figure 49 Median score grouped for each criterion category ... 61

Figure 50 Median score for each evaluation criterion ... 61

Figure 51 HOMES validation .. 64

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 14 / 187

Figure 52 Decomposition and identification of Validation Criteria 126

Figure 53 E-OCVM Operational Concept Validation and Implementation 128

Figure 54 SeCMER conceptual model ... 132

Figure 55 Graphical representation of SI* concepts ... 133

Figure 56 Scope of the ATM case-study walkthrough .. 135

Figure 57 All the actors .. 139

Figure 58 All the resources ... 139

Figure 59 Overall ATM view ... 140

Figure 60 Focus on arrival sequencing .. 141

Figure 61 Focus on equipment .. 141

Figure 62 Identification and authentication, physical access and auditing 143

Figure 63 Identification, authentication and auditing, technical room 143

Figure 64 Least privilege and auditing ... 144

Figure 65 Robustness wrt external messages, phone lines .. 144

Figure 66 Robustness with respect to external messages, radio 145

Figure 67 Robustness with respect to external messages, radar 145

Figure 68 Risk estimation .. 149

Figure 69 Risk estimation .. 149

Figure 70 Risk estimation .. 149

Figure 71 Risk estimation wrt robustness wrt external messages: Phone lines ... 150

Figure 72 Risk estimation wrt robustness wrt external messages: Radio 150

Figure 73 Risk estimation wrt robustness wrt external messages 150

Figure 74 Risk evaluation .. 151

Figure 75 Risk evaluation wrt identification and authentication and auditing 151

Figure 76 Risk evaluation wrt least privilege and auditing ... 151

Figure 77 Risk evaluation wrt robustness wrt external messages 152

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 15 / 187

Figure 78 Risk evaluation wrt robustness wrt external messages 152

Figure 79 Risk evaluation wrt external messages ... 152

Figure 80 Overall system / software specification using SMS 153

Figure 81 Staff physical arrival process (BPMN) ... 154

Figure 82 Aircraft arrival sequencing collaboration (BPMN) 155

Figure 83 ATC system architecture ... 155

Figure 84 Approach control service portfolio .. 156

Figure 85 The electronic hand-over service specification .. 156

Figure 86 Risk assessment on the staff physical arrival process 158

Figure 87 Corruption of data threat scenario .. 159

Figure 88 Risk assessment on the arrival sequencing process 159

Figure 89 Activity diagram for the physical arrival of the TCC 160

Figure 90 Identification and authentication, physical access and auditing 163

Figure 91 Identification and authentication and auditing: Technical room 163

Figure 92 Confidentiality of State Flight information ... 164

Figure 93 Risk evaluation .. 164

Figure 94 The automated arrival sequencing process ... 165

Figure 95 The automated arrival sequencing collaboration .. 166

Figure 96 Adding the “State Flight” information .. 167

Figure 97 Approach control service portfolio, after AMAN introduction 167

Figure 98 ATC system architecture after introduction of AMAN 168

Figure 99 The import security concept window .. 168

Figure 100 The import security concept window .. 169

Figure 101 Attack method for dishonest compromise of flight data 170

Figure 102 Overall risk assessment ... 170

Figure 103 Si* Diagram of the initial situation .. 176

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 16 / 187

Figure 104 UML Component diagram of the initial situation .. 177

Figure 105 UML Deployment diagram of the initial situation....................................... 178

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 17 / 187

LIST OF TABLES

Table 1 Interaction among industrial case studies and technical work packages 5

Table 2 Sample concepts and graphical representation in SI* .. 38

Table 3 High-Level Objectives ... 63

Table 4 Security-As-A-Service (SeAAS) validation results ... 68

Table 5 Change Patterns validation results .. 74

Table 6 VeriFast validation results .. 81

Table 7 Security-by-Contract (SxC) validation results ... 87

Table 8 Telling Test stories (TTS) validation results .. 100

Table 9 WP Artefacts validated by case study ... 121

Table 10 Mapping of concepts between SeCMER and SI* ... 133

Table 11 Likelihood scale .. 146

Table 12 Impact (consequence scale) ... 146

Table 13 Risk matrix .. 146

Table 14 Risk evaluation criteria .. 147

Table 15 Qualification of consequence estimates .. 148

Table 16 Risk evaluation overview .. 153

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 18 / 187

1 Validation Objectives

This section identifies the SecureChange solutions, i.e. methodologies and tools, developed
by the technical WPs. They are the focus of the validation activities. This section reports
the main Validation Objectives for each developed solution. The validation objectives that
have driven the first two year of the project have been tailored to the different case
studies (as identified in D1.2 [3]) and they are reported together with the validation
activities conducted on the SecureChange Solutions. The work in the last year of
SecureChange has focused on the validation of WPs’ technical artefacts, rather than the
development of new ones.

1.1 WP2 – Architecture and Design Process

The main outcome for WP2 was the development of concepts and tools for architecture,
design and operation of lifelong systems. In particular, WP2 delivered a framework for a
Security Architecture for Evolving Requirements and a tool-based change-driven
security engineering process. Main Objectives to be fulfilled by the Security Architecture
for Evolving Requirements are COVERAGE and APPLICABILITY.

Regarding COVERAGE, criteria identified for its validation state that:

1. Every type of security requirement must be realized through one or more technical
security service in the Target Security Infrastructure (TSI).

2. Every type of security requirement must be realized through one or more abstract
security service in the Security Architecture (SA).

3. Abstract security services and compositions map to configurable technical services or
compositions thereof in the Target Security Infrastructure (TSI).

Regarding APPLICABILITY, we identified the following criteria:

1. The TSI must cover change scenarios which are related to the ATM and/or the HOMES
case study.

2. Service composition in the SA and TSI must be consistent.

3. The mapping of the security requirements onto the services in the SA and TSI must be
valid.

Relevant goals for an effective Conceptual Model for a security engineering process for
evolving systems are traceability, change-driven process and modularity. Formally stated
the Objectives are COVERAGE, APPLICABILITY, and ANALYZABILITY.

Regarding COVERAGE the following criteria are to be fulfilled:

1. Relevant artefacts which are processed in security engineering must be categorized
and identified.

2. Relevant activities which are executed in security engineering must be categorized
and identified.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 19 / 187

APPLICABILITY validates the change-driven by ensuring that:

1. Change-driven security engineering process must cover change scenarios which are
related to the HOMES and/or ATM case study.

We identified the following criteria with respect to ANALYZABILITY:

1. Models with states of the processed artefacts must be analyzable by using reasonable
techniques.

1.2 WP3 – Requirements

The main results of WP3 involve: a conceptual model for the characterisation of evolving
requirements, a methodology base on such conceptual model, algorithms and reasoning
techniques for incremental requirements models evaluation and transformation, and a
tool to analyse the impact of changes in requirements models. Among the WP3 result is
the identification of the key features of requirements models that are subject to
evolutionary transformations and the definition of the methodological aspects for their
graphical and conceptual representations, their versioning capture and their run-time
monitoring. Objectives to be fulfilled in the definition of the conceptual model for the
characterisation of evolving requirements are: COVERAGE, APPLICABILITY and
ANALYZABILITY of the model.

For the COVERAGE, two criteria are identified:

1. All requirements types must be representable in the model.

2. Evolution of requirements must be representable in the model.

Regarding the model APPLICABILITY, one of the main relevant criteria is:

1. Case study requirements must be representable in the model.

Finally, the ANALIZABILITY of the developed model states that:

1. The model must be analyzable by using reasoning techniques.

The requirement conceptual model and the associated general methodology should be
able to handle the changes on security requirements, including how to represent security
requirements, how to model the changes of them, how to manage the changes and how to
argue that the changes are fit for the purposes. The conceptual models were refined to
better satisfy WP3 objectives.

Other WP3 results involve algorithms and reasoning techniques for incremental
requirements models evaluation and transformation. Objectives to be fulfilled in the
definition of the algorithms and reasoning techniques for incremental requirements
models evaluation and transformation are: COVERAGE, APPLICABILITY and
PERFORMANCE.

For the COVERAGE, one criterion is identified:

1. The transformation algorithms are able to propagate any type of change.

For the APPLICABILITY, one criterion is identified:

1. Transformation algorithms must be able to propagate change between different
requirements models and design models.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 20 / 187

For the PERFORMANCE, two criterions should be obtained:

1. Changes are detected and propagated faster than by traditional transformation
algorithms.

2. Complex models can be handled by the algorithm.

WP3 has also developed a prototype of the tool to analyze the impact of a change in the
requirements model. Objectives for the tool are: FUNCTIONALITY and USABILITY.

For the FUNCTIONALITY, two criteria are identified:

1. The representation of the conceptual model for requirements should be supported by
the tool.

2. Impact of a change can be assessed by the tool.

For the USABILITY one criterion is:

1. The representation of the requirement conceptual model and the change analysis
should be easy to use functionality for end-users.

1.3 WP4 – Model Design

WP4 developed methodologies for modelling evolution in security designs and
requirements for integrating security design, modelling and assessment technologies as
well as models into a security engineering process. Main result of SecureChange is a
conceptual process related to industry practices for the characterisation of evolving
design. Properties relevant for the model developed are:

COVERAGE / APPLICABILITY of the model, that means:

1. The design must be representable in the model.

2. Change must be representable or detectable in the model.

SOUNDNESS of the model with respect to changes and evolution:

1. The model-based approach must be sound with respect to change.

Formal ANALYZABILITY of the model:

1. The model must be analyzable by using reasoning techniques.

1.4 WP5 – Risk Assessment

During the first year of project, WP5 evaluated existing methods and principles for
assessment of security, privacy and dependability and identified strengths and
weaknesses of existing methods with respect to assessment of long-lived and evolving
systems. Then WP5 pinpointed open issues that needed to be addressed, while still
making full use of existing knowledge in the field. Furthermore, WP5 during the first year
developed a risk modelling language for documenting forecasts of future evolvement of a
system. The language should have the expressiveness to capture future evolvement of a
system, while still being suitable for use in an assessment process that involves analysts

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 21 / 187

with different backgrounds and levels of training. Thus, main objectives for the definition
and development of a proper and effective language addressing evolvement are:

COVERAGE, that is:

1. Change must be representable in the model.

2. Relevant risks must be representable in model.

APPLICABILITY, that is:

1. Models must be easy to make, use and read.

2. Model must be scalable.

During the second year of the project, WP5 developed a method for security, privacy and
dependability assessment with respect to forecast of future evolvement, a framework for
integrated documentation of system and assessment results, and a threat management
method incorporating the parameter space of applications. For the methods the main
objectives are:

COVERAGE, that is:

1. Methods must discover relevant risks.

2. Method must make useful predications.

APPLICABILITY, that is:

1. Method must be usable for heterogeneous groups.

For the documentation framework the main objectives are:

APPLICABILITY, that is:

1. Models must be representable.

2. Traceability of models.

For the threat management method the main objectives are:

COVERAGE, that is:

1. Parameter space of application representable in model.

2. Method must make useful risk estimations.

During the third year of the project, WP5 has developed techniques, methods and tools for
automatic or semi-automatic revalidation of assessments with respect to change.

1.5 WP6 – Verification

In WP6, a new programming model has been defined for an emerging vulnerability class.
This high-level objective is demonstrated by the following concrete results:

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 22 / 187

 A conceptual model characterizing a new programming model.

 A notation supporting the programming model.

The objectives of this WP, during year one, were to identify an emerging relevant
vulnerability and to define a suitable programming model to counter it. Consequently, a
user-friendly notation has been defined to be used in order to annotate the source code.
The notation should have the following 3 main characteristics:

1. COVERAGE

(a) The programming model must ensure absence of a well-defined class of security
vulnerabilities.

(b) The programming model should support common coding patterns (as long as they
do not violate security).

2. SOUNDNESS

(a) A program that is verified to comply with the programming model should not
contain vulnerabilities of the class covered by the programming model.

3. LOW ANNOTATION OVERHEAD

(a) The programming model should not impose too much additional effort on
developers.

1.6 WP7 – Testing

WP7 focused on developing a methodology and a prototype of model-based testing tool
for testing the evolutions. Test generation is ensured by a model-based approach. Test sets
are based on particular coverage criteria, e.g. security requirements criteria. Studying the
impact of evolution on model-based testing approach, and taking into account the state of
the art, WP7 proposed extensions of methods and tools to deal with evolution. WP7
generated tests to emphasize the correctness of the system with respect to evolution, on
the base of the requirements and model changes. Objectives to be covered for the
validation of the Behavioural and Security Model developed in WP7 are:

1. COVERAGE:

(a) Security properties specified in addition to the model.

(b) Evolution of the requirements can be expressed as model modifications.

2. APPLICABILITY:

(a) The security aspects are representable in the model.

(b) The model evolutions can be translated as updates of its transition relation.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 23 / 187

2 ATM CASE STUDY

This section describes the validation activities and results based on the ATM case study.
The validation organisation has been tailored to capture specific validation objectives with
respect to the SecureChange artefacts and ATM domain features. The overall validation
organisation, activities and objectives build over the previous WP1 deliverables [1][2][3],
which have defined the scope and feasibility of SecureChange artefacts.

2.1 VALIDATION ORGANISATION AND CONDUCT

The ATM case study focused on four work packages (i.e. WP2 Architecture and Design
Process, WP3 Requirements, WP4 Model Design and WP5 Risk Assessment) and their
artefacts. Due to the nature of the ATM case study (mainly concerning with technological
changes from an organisational viewpoint) the WPs focusing on requirements, design and
assessment aspects, the ATM case study has contributed towards the validation of
relevant artefacts supporting specific design and assessment activities while preserving
critical security features. Each WP has produced different artefacts (e.g. methodologies,
tools). Hence, it has been necessary to tailor the validation activities to the different
peculiarities of the artefacts and their developmental stages. This required WP-tailored
validation activities. This section describes the validation activities for each WP from an
organisational viewpoint and discusses them.

2.1.1 HIGH–LEVEL OBJECTIVES

The validation objectives of the ATM case study have concerned the relevance of
SecureChange artefacts and their assessments by ATM domain experts (e.g. Air Traffic
Controllers) and potential end-users (e.g. IT and operational experts within an Air Traffic
Control Service provider). The validation activities have been tailored for each WP and
related artefacts. This is to take into account the different nature of the artefacts (e.g.
methodologies, modelling languages, tools). Moreover, it has been necessary to support
different developmental paths of the artefacts. All SecureChange artefacts delivered by the
ATM-related WPs have been validated by subsequent activities in order to support their
developments through subsequent refinements (i.e. adjustments due to feedback). The
main validation activities fall into three major categories: Methodology Evaluation
(modelling), Walkthrough and Tool Live Demo with ATM Experts. Methodology evaluation
consisted of modelling exercises focusing on specific changes and security requirements in
order to refine and consolidate the underlying modelling languages and their
methodologies, respectively. Walkthrough activities involved step-by-step evaluation of
the SecureChange methodologies with ATM experts. This allowed to assess the proposed
methodologies with domain experts and to identify alternative usages (with respect to
current practices within the ATM domain). Finally, tool live demo activities and exercises
allowed the validation (in terms of usability and acceptance by ATM experts) of the tools
supporting the SecureChange methodologies. Figure 2 shows the subsequent activities
and their focus on the SecureChange artefacts forming the ATM validation. The ATM
validation is consistent with the SecureChange Validation Iterative Process (as identified
and described by the WP1 deliverables [1][2][3]).

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 24 / 187

Figure 2 ATM Validation

Each validation activity involved ATM experts in order to assess SecureChange artefacts
from a practitioner viewpoint and to identify opportunities for exploitation of project
results within the ATM domain. The ATM case study identifies specific user needs and
expectations for the ATM industrial domain. In particular, the ATM validation highlights
how SecureChange solutions can be used in the application domain and expected
improvements to comply with industry practices. The remainder of this section describes
the validation outcomes for each WP artefact. For each validated SecureChange artefact, it
describes the main artefact features, the high-level validation objectives (as identified in
[3]) and the validation results.

2.2 WP2 Architecture and Design Process

2.2.1 WP2 ARTEFACTS

The validation activities for WP2 focused on the two main artefacts delivered:

1. Change driven security engineering process.

2. Tool-Support by MoVE Framework.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 25 / 187

The change driven security engineering process highlighted a methodological account of
security engineering from a process viewpoint. The procedural account of security
engineering is fundamental in order to coordinate and relate different modelling artefacts.
The change driven security engineering process was presented to and validated by ATM
experts in a dedicated workshop (Rome, June 2011). The MoVE framework captures the
change driven security engineering process. The tool implementing and supporting the
MoVE framework, hence the change driven security engineering process, has been
presented to and validated by ATM experts in another dedicated workshop (Rome,
September 2011). The following sections report the results of the validation activities
concerning the WP2 artefacts (i.e., the change driven security engineering process and the
tool-Support by MoVE Framework).

2.2.1.1 Change Driven Security Engineering

The change driven security engineering process has been initially validated in a dedicated
workshop (Rome, June 2011) with ATM experts. The initial validation focused on the
aspects that concern the process. The rationale for the process is that it is necessary to
support different stakeholders, who may need to be informed about specific changes
affecting critical security properties. The SecureChange process is concerned in particular
with those business stakeholders who are responsible for the design, implementation and
deployment of ICT in complex application domains. The change driven security
engineering process aims to support collaboration among stakeholders in order to assess
the impact of changes on security properties. Moreover, it would enable them to identify
what aspects of the ICT have changed and their impact on critical security properties. This
requires the process to support different modelling artefacts that are useful to the
stakeholders (see Figure 3).

Figure 3 Collaboration support

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 26 / 187

The change driven security engineering process copes with the identified challenges by:

 being fully driven by change events and change propagation,

 supporting change propagation based on dependencies between artefacts,

 providing an integrated view of the entire system, since change cannot be tackled
from a single perspective anymore,

 supporting a tight integration of functional and security aspects,

 defining clear domains and responsibilities for the various stakeholders.

The change driven security engineering process supports different stakeholders by means
of common system views (consisting of functional system models, security models domains
and responsibilities) and mechanisms of reflecting changes (consisting of model element
states, change events and change propagations). Figure 4 shows the functional system
meta-model underlying the change driven security engineering process. The different
views provide direct mappings on the level of model elements (e.g. requirement models,
system models, architecture models) that are tailored to support different stakeholders.
The coordination of such elements, hence the corresponding views, is central to the
change driven security engineering process.

Figure 4 Functional system meta model

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 27 / 187

VALIDATION SCENARIOS and EXERCISES

The validation workshop consisted of a walkthrough of the ATM case study. The WP2
models and basic notions were presented to ATM experts and contextualised for the ATM
case study (in terms of changes and security properties). WP2 validation focused on the
ATM Organizational Level Change and on the security properties of Information Protection
and Information Provision [1][2][3]. The impact of the introduction of the AMAN (Arrival
MANager) was assessed according to different viewpoints: information view, business
process view and system view. Figure 5 shows for instance the impact of the introduction
of the AMAN from a business process viewpoint of analysis. The analysis of changes
involved also an information view (highlighting changes in the information flow) and a
system view (highlighting changes in the system architecture). All these viewpoints of
analysis contributed to the assessment of the impact of changes, hence, the risk
assessment. The changes triggered new requirements that were assessed. The risk
analysis was then updated in order to account for AMAN introduction and the potential
impact on the security properties. This required a coordination of different models (e.g.
requirements, architecture and risk) while updating their status as modified by relevant
engineering activities.

Figure 5 Impact on business process view

The change driven security engineering process relies on different state machines
capturing the model states while they are updated. These state machines can be tailored to
capture domain specific engineering processes. The state machines reflect the lifecycle of
artefacts (e.g. state machine for the system model). Transitions between states define
change handling and fire new change events to other models (e.g. evaluation of all security
requirements causes the security objectives to change their states to evaluated). Figure 6
shows for instance a state machine capturing the different states for a requirements
change.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 28 / 187

Figure 6 Sample state machines for requirements changes

Figure 7 shows sample models (i.e. security requirements, architecture changes and risk
estimates) for the ATM case study once all models are reassessed in order to take into
account the introduction of the AMAN.

Figure 7 Sample models in an evaluated state again

The walkthrough of the ATM case study highlights how the change driven security
engineering copes with the identified challenges. In particular, it is fully driven by change
events and change propagation. Change propagation is based on dependencies between
artefacts. It provides an integrated view of the entire system, since change cannot be
tackled from a single perspective anymore, and a tight integration of functional and

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 29 / 187

security aspects. It defines clearly domains and responsibilities for the various
stakeholders.

VALIDATION CRITERIA

The evaluation criteria of Applicability and Human Effort (as identified in deliverable D1.2
[3]) for the change driven security engineering process are detailed as follows:

 Applicability: The change-driven security engineering process can be applied to the
ATM case study. We operate with the following increasing levels of fulfilment:

o The change-driven process case study can be conducted by the researchers
developing the methodology.

o The report documenting the results of the case study can be understood by the
relevant stakeholders.

o The major principles of the change-driven process can potentially be established by
a software provider.

o The principles of the change-driven process can be fully applied by a software
provider.

 Human effort: The second evaluation criterion is that the change-driven software
engineering process can produce the desired results with less effort than by using
alternative, traditional methods. We operate with the following increasing levels of
achievement:

o The steps of the security engineering process are doable, no matter the level of
required human effort.

o Handling a change request with the change-driven security engineering process is
doable with the same level of human effort as traditional methods and/or manual
approaches.

o A change request can be handled with significantly less human effort than by using
traditional methods and/or manual approaches.

VALIDATION RESULTS

The walkthrough of the ATM case study was evaluated by a feedback session and a
questionnaire evaluation. Both activities allowed us to capture a rich set of information to
evaluate the change driven security engineering process with respect to the ATM case
study. The feedback session concluded that:

1. The change driven security engineering process supports properly capturing and
analysing changes and evolutions of complex domains such as ATM. All the
methodology steps are relevant to evolution.

2. The Change-Driven Security Engineering Process allows the modelling of complex
security problems. However, it would be necessary to be tested on more complex
problems and detailed pilot studies. This is because it is related to the fragmentation
of problems and the required level of detail to model these aspects.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 30 / 187

3. The change driven security engineering process captures ATM organizational settings
and operational procedures. It would deal also with new systems and be related to
system usages too.

4. It is clear how all the artefacts/steps of the Change-Driven Security Engineering
Process are linked in a well-defined methodology. However, it is not very clear and
easy to grasp how states change from one step to the other. Probably ways to better
highlight the consequence of change handling step are needed.

5. The change driven security engineering process could be applied in the ATM domain
with R&D, for industrial usage not clear yet. It would need more integration and
further evolution.

A questionnaire evaluation followed the feedback session. The evaluation questionnaire
consisted of six groups of evaluation criteria (four concerning in general SecureChange
artefacts, i.e., Methodology, Modelling Language, Algorithm and Tool, one concerning the
relevance for ATM domain and a final one tailored specifically for the WP). Figure 8 and
Figure 9 show the median score for each evaluation group or criterion, respectively.

Figure 8 Median score grouped for each criterion
category

Figure 9 Median score for each evaluation
criterion

The relevance for the ATM domain focused on the following criteria (ATM Relevance):

 The methodology/artefact complies with practices drawn from the Air Traffic
Management (ATM) domain.

 The methodology/artefact can be easily understood and applied by ATM experts.

 The methodology/artefact deals with requirements changes drawn from ATM case
study.

 The methodology/artefact deals with security properties drawn from the ATM case
study.

The evaluation of specific WP’s artefacts focused on three main criteria:

 Applicability: The change-driven security engineering process can be applied to the
ATM case study.

 Usability: The change-driven security engineering process can produce the desired
results with less effort that by using alternative traditional methodologies.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 31 / 187

 Tool Support: The change-driven security engineering process is supported and
demonstrated by a specific tool.

2.2.1.2 MoVE Tool

The MoVE Tool has been devised in order to support the change driven security
engineering process and its main steps. It is a means to coordinate different state
machines that relate to the status of different design artefacts (e.g. requirements models,
risk analysis models). The main rationale is that different system artefacts that concern
with the development environment are subject to changes. Different tools are often used
in order to support developmental activities (e.g. requirements modelling, risk analysis).
Different stakeholders are responsible for the management of such artefacts.
Unfortunately, the coordination of artefacts and developmental activities is little
supported. The MoVE tool addresses such aspects by:

 notifying stakeholders of relevant changes,

 fostering collaboration among stakeholders,

 supporting the analysis of aspects of systems that are affected by changes.

Figure 10 shows the conceptual architecture of the MoVE tool. The coordination among
different artefacts is supported by specific adapters that capture the different states. The
MoVE tool highlights changes and communicates them to stakeholders.

Figure 10 Conceptual Architecture of the MoVE Tool

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 32 / 187

VALIDATION SCENARIOS and EXERCISES

A dedicated workshop (Rome, September 2011) was organised in order to validate the
implementation of the MoVE tool and its support for the change driven security
engineering process. The validation activities consisted of a walkthrough user story
supported by the MoVE tool of the selected changes requirements and security properties.
The main aim was to assess and validate how the MoVE tool supports the different
underlying aspects of the change driven security engineering process. In particular, how
the MoVE tool supports the coordination and communication of changes across different
but related developmental artefacts. Figure 11 highlights that it is necessary to coordinate
stage changes in order to support the change driven security engineering process.

Figure 11 The MoVE Tool highlighting state changes

VALIDATION CRITERIA

The evaluation criteria of Applicability and Human Effort (as identified in deliverable D1.2
[3]) for the MoVE TOOL are detailed as follows:

 Applicability: The framework is applied to the Change Driven Security Process. We
operate with the following increasing levels of fulfilment:

o An implementation of the framework is available and demonstrated with academic
examples.

o An implementation of the framework is available and is applicable to the ATM case
study.

o The implementation of the framework can be adopted by relevant stakeholders
and applied to their tool landscape.

o The framework and its interfaces are adopted by software providers and further
developed.

 Human effort: The second evaluation criterion is that a process supported by the
MoVE Framework can produce the desired results with less effort than by using

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 33 / 187

alternative, traditional methods. We operate with the following increasing levels of
achievement:

o The installation of the framework enables the implementation of a change driven
security process.

o The installation of the framework reduces the communication and synchronization
overhead, reducing human effort.

VALIDATION RESULTS

The WP2 ATM Validation Workshop (Rome, September 2011) was concerned with the
following objectives:

1. Introduction on the change driven security engineering Process to ATM experts.

1. Demonstration of MoVE Tool support for the SecureChange Integrated Process.

2. Evaluation of the tool and results.

The management of models in a change driven process requires an effective set of
networked tools. In the context of SecureChange we employ the infrastructure of MoVE
(Modelling and Versioning Environment) that provides a framework to build such a tool
support. Figure 12 shows a sample screenshot of the MoVE Tool.

Figure 12 Screenshot of the MoVE Tool

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 34 / 187

MoVE provides version control features leveraging classical subversion technology and
extends it using Eclipse Modelling Framework (EMF) to provide sophisticated model
versioning methods. To support the Living Security process the MoVE tool provides model
element states and respectively state machines for model elements. State machines are
implemented based on SCXML and OCL as a query and constraint language. Together with
change propagation, state machines fulfil the need of a change-driven process. MoVE
adapters allow tight integration and connection of heterogeneous modelling artefacts.

The user story of the walkthrough validation session followed specific steps in order to
highlight the different functionalities of the MoVE tool and its support to the change driven
security engineering process. The user story involved the following steps (in summary):

1. Project Setup – a script loads different models (e.g. UML system models, lists of
requirements state machines) and information (e.g. configuration of MoVE plug-in).
This created an initial repository with a basic set of models.

2. Design Changes – Checking the system model (Figure 13 shows an example of an
UML system model that is modified) and adding two new elements (each with state
ADDED): A/C position and ADS-B.

3. Committing Changes – The MoVE repository starts state machines and changes
Business Security Objectives SO1 and SO2 to state ADDED according to state machine
definition. This can be viewed in the commit log and in the state machine change
window (Figure 13). Changing the state of A/C position and ADS-B to state PENDING
and committing changes.

Figure 13 Screenshot of the state machine change window

4. Checking Security Requirements – Switching to requirements model, adding two
Security Requirements SR7 and SR8 and committing changes. Adding Security
Requirement SR9 with parent SR2 and committing changes result in an additional
change in SR2s state. System Designer is informed and changes the state of A/C
position and ADS-B to state COMPLETE. Commit changes.

5. Risk Assessment – Add 3 new Risks R5 – R7 with State ADDED to model. Commit
changes. Some Security Requirements change state to COMPLETE. Complete
requirement definition and set state to EVALUATED. Commit changes.

6. Changes Evaluated – Previously added Security Requirements change their state to
EVALUATED. Therefore SR2 changes to EVALUATED too. This triggers also a state
change in SO1 and SO2. The two elements of A/C position and ADS-B change their
state to EVALUATED.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 35 / 187

After the evaluation session, we gathered feedback by questionnaire to collect structured
feedback and brainstorming session to collect suggestions about the MoVE tool and the
supported change driven security engineering process. The brainstorming session finally
was useful to interpret some of the questionnaire outcomes. The following points
summarise the final evaluation remarks for the MoVE tool and the change driven security
engineering process. Figure 14 and Figure 15 show the median score for each evaluation
group or criterion, respectively.

Figure 14 Median score grouped for each
criterion category

Figure 15 Median score for each evaluation
criterion

2.2.2 Validation Remarks

The evaluation activities for the WP2 artefacts stress the following evaluation remarks:

1. It is critical the role of State Machines as a means to coordinate change management
processes in order to safeguard critical security properties.

2. Different State Machines may support different project phases (e.g. requirements
modelling, system design and risk assessment). However, tailoring such State
Machines and building domain-specific adapters (e.g. adapters to integrate tools
within the ATM domain) for different models require substantial effort.

2.3 WP3 Requirements

2.3.1 WP3 ARTEFACTS

The SecureChange Methodology for Evolutionary Requirements (SeCMER) supports:
Requirements Elicitation, Requirements Evolution and Argumentation Analysis.

 Requirements Elicitation. The SeCMER’s requirements elicitation step produces a
requirements model (i.e. an instance of the SeCMER conceptual model), which
combines concepts drawn from Problem Frames, SI* and security properties.

 Requirements Evolution. The SeCMER’s requirements evolution step is concerned
with detecting changes that might have an impact on the satisfaction of a security
property. Such changes are detected by means of evolution rules that are event-
condition-action rules. The event and condition part of a rule match a possible change
in a requirement model while the action part specifies corrective actions to be applied
to the requirement model.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 36 / 187

 Argumentation Analysis. The SeCMER’s argumentation analysis step checks that
security properties are preserved by evolution and identifies new security properties
that should be taken into account. The output of this phase is an argumentation model
that provides evidence for denial of satisfaction of a security property.

Figure 16 shows the main steps supported by the SeCMER methodology.

Figure 16 Overview of SeCMER

The validation activities for WP3 focused on the modeling of evolution as obervable and
controllable rules as well as on the two main delivered artefacts:

1. SeCMER Methodology.

2. SeCMER Tool.

The SecMER methodology was validated by two dedicated workshops (Rome, April and
July 2011) with ATM experts. The SecMER tool (and its support to the SecureChange
Methodology for Evolutionary Requirements) was validated by a dedicated workshop
with ATM experts (September 2011).

2.3.1.1 SeCMER Methodology

The validation activities of the SeCMER modelling methodology focused on the assessment
of: modelling requirements evolution, estimating the impact of changes on requirements
and supporting of the different phases. The SeCMER methodology consists of different
modelling artefacts that combined together deal with requirements changes and security
properties. The SeCMER methodology supports:

Change
Request

Requirements
Elicitation

System
Design

Requirements
& Change

Argument
Analysis

Requirements
Evolution

Evolution
Rules

Δ Security
Properties

Risk
Assessment

secure
after
change?

requirement
satisfiable?

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 37 / 187

 modelling requirement evolution by different requirement methodologies, i.e. SI*,
Problem Frames and SecMER ontology,

 automatically detecting requirement changes and violation of security properties by
means of evolution rules,

 argumentation analysis to check security properties are preserved by evolution and to
identify new security properties.

The main output from the methodology is therefore either an argumentation that system
changes do not affect required security properties or a formulation of security properties
that are satisfied by new system design. The first workshop (Rome, April 2011) concerned
with the assessment of the SeCMER conceptual model. In particular, the validation
activities focused on small-scale modelling exercises in order to assess the
understandability of requirements evolution’s representations. The second workshop
(Rome, June 2011) concerned with the assessment of the different phases supported by
the SeCMER methodology. The following sections report the validation results.

VALIDATION SCENARIOS and EXERCISES

The first workshop (Rome, April 2011) concerned with the assessment of a graphical
representation of requirements evolution (i.e., of evolution rules for requirements). The
workshop focused on the following points:

1. Stakeholders’ desire of requirements evolution analysis – what type of support do
stakeholder expect to receive from an evolution analysis?

2. Notation and graphical representation of evolution rules for requirements – How to
represent the observable evolution rules? Are the rules able to capture the mental model
of evolution of the users?

3. Preliminary elicitation of quantitative estimates (e.g. likelihood of changes) – What
kind of questions to ask stakeholders to get numbers (i.e. probabilities of evolutions)?

The workshop involved a role-playing scenario in which different stakeholders were
concerned with changes requirements. Two main roles took part in the workshop’s
validation activities:

• Requirement engineers (modellers) who are responsible to conduct elicitation
activities (e.g. brainstorming sessions) with stakeholders about stakeholder’s
desires, and present graphical representation of rules in the designer workshop.

• Business Stakeholders (Domain Experts), e.g. Air Traffic Controllers, who will
evaluate and provide feedback on the graphical representations of evolution rules.

The workshop consisted of different sessions. The initial session introduced the general
aspects of goal-oriented requirements engineering. In particular, the introduction
provided a rationale for capturing requirements (and requirements evolution) in a
structured way. It described the graphical notation of SI* and a general modelling
requirements engineering process. Table 2 shows some examples of goal-oriented
concepts and their representations in SI*. Examples drawn from the ATM case study in
ATM were represented by an English description as well as a requirements model.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 38 / 187

Table 2 Sample concepts and graphical representation in SI*

Agent/Role

Goal

Delegation

Event

The first workshop (Rome, April 2011) aimed at assessing alternative representations of
requirements changes. In particular, the ATM case study was modelled in order to
investigate how requirements evolution modelling would enhance reasoning about
changes from a goal-oriented viewpoint, that is, how requirements changes would affect
responsibilities from an operational viewpoint. Figure 17 shows an example of observable
evolution rules stressing changes in terms of goals due to the introduction of the AMAN.

Figure 17 Alternative goal-oriented changes due to AMAN introduction

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 39 / 187

Similarly, during the workshop, ATM experts (e.g. Air Traffic Controllers) assessed the
representation of changes (in terms of goals), the likelihood of particular change scenarios
and the representation of such chances. The combination of change representation and
change likelihood is useful in order to capture evolution rules to be monitored. ATM
experts pointed out that currently, in the whole ATM domain, an increasing interest is
devoted to methodologies and processes supporting and documenting the decision
making activities within the ATM developments. They have confirmed that change
management and the need of a formal methodology to trace and assess the introduction of
new operational concepts and their impact on ATM Key Performance Areas are among
R&D problems. Currently, change management processes are supported by influence
diagrams that allow to trace strategic objectives to operational solution and that allow to
perform what if analysis to understand the impact of a proposed change. However, the
Evolution Elicitation and Probability Estimation might be useful during the brainstorming
phase to identify the alternative operational requirements associated with a proposed
change. The reasoning phase instead can be used to support the decision makers in
identifying the best solution at operational level to be implemented. The SeCMER
methodology to model and reason on evolution would support managers and controllers
during the change management process. Figure 18 shows another example of observable
evolution rules.

Figure 18 Modelling evolution as a set of rules

Overall, during the ATM workshop for, the evaluation of modelling and reasoning on
evolution highlighted that:

 The ATM experts pointed that Evolution Elicitation and Probability Estimation might
be useful to identify the alternative operational requirements associated with a
proposed change.

 Reasoning on evolution can be used to support decision makers in identifying the best
solution at operational level to be implemented.

<First Possibility of Evolution>

<Second Possibility of Evolution>

<Original Requirements>

42%

46%12%

R2: Support a robust,

scalable IKMI

R3: Support single sign-on

R1: Manage keys

and identities of
system entities

R2: Support a robust,

scalable IKMI

R1: Manage keys

and identities of
system entities

R1: Manage keys

and identities of
system entities

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 40 / 187

 Predicting the probability of evolutions is not trivial. The ATM experts suggested that
an incremental approach should be adopted to identify all possible evolutions for a
given before-evolution requirements model.

The second ATM workshop (Rome, June 2011) was useful to consolidate the validation of
the SeCMER methodology and to get some initial feedback about the tool support. The
validation activities involved the presentation of the SeCMER methodology to ATM experts
and a walkthrough change scenario. The evaluation was concerned with each modelling
artefact supporting the SeCMER methodology. Modelling examples captured the ATM case
study. Figure 19, Figure 20 and Figure 21 show examples of requirements model, security
pattern and argumentation analysis, respectively.

Figure 19 Example of requirements model

pattern

assetLeak(ConcernedActor,UntrustedActor,SecGoal,Asset) {

find want(ConcernedActor, SecGoal);

find securityGoal(SecGoal);

find protect(SecGoal, Asset);

find delegate(Concerned Actor, UntrustedActor, Asset);

neg find trust(Concerned Actor, UntrustedActor, Asset);

}

Figure 20 Example of security pattern

Figure 21 Example of argumentation analysis

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 41 / 187

VALIDATION CRITERIA

The evaluation criteria take into account two aspects of the SeCMER methodology: the
modelling language and the overall methodology (supporting different phases, i.e.
requirements elicitation, requirements evolution and argumentation analysis). The
evaluation criteria of Applicability and Human Effort (as identified in deliverable D1.2 [3])
for the SeCMER methodology are detailed as follows:

SeCMER Modelling Language

 Applicability: The first evaluation criterion is that the SeCMER modelling language
can be applied on the ATM case study for modelling and reasoning on evolving
requirements.

o Both functional and security requirements characterizing the introduction of
the AMAN must be modelled using SeCMER concepts.

o Evolution of requirements associated with the introduction of the AMAN must
be modelled using SeCMER concepts.

o The requirement models related to the introduction of the AMAN must be
analyzable by using reasoning techniques.

o The requirement modelling must be computer-aided.

 Human effort: The second evaluation criterion is that the modelling of changing
requirements in the ATM case study can be conducted with less effort than by using
state of the art requirements modelling languages or techniques.

o The modelling of changing requirements using SeCMER methodology is doable.

o The modelling of changing requirements using SeCMER methodology saves
effort.

SeCMER Methodology

 Applicability: The first evaluation criterion is that the SeCMER methodology can be
applied on the ATM case study for modelling and reasoning on evolving requirements.
We can identify several sub criteria for the applicability to the ATM case study

o The SeCMER methodology should consists of well defined, precise and easy to
apply steps:

• Each step can be understood and applied by the researcher.

• Each step can be understood and applied by the stakeholder.

• Each step can be understood and applied by the stakeholder, at
least partially.

• Each step can be understood and applied by the stakeholder, in
complete independence.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 42 / 187

o Explicit linkage of produced artefacts with SeCMER methodology steps.

o The methodology can be applied to the case study:

• Can be done by the researcher.

• Results can be understood by the stakeholder.

• Can be done by the stakeholder, at least partially.

• Can be done by the stakeholder, in complete independence.

 Human effort: The second evaluation criterion is that the SeCMER methodology can
be applied to the ATM case study with less effort than other existing requirement
engineering approached.

o SeCMER methodology steps can be executed no matter the level of required
human effort.

o SeCMER methodology steps can be executed with the same level of human
effort as traditional methods and/or manual approaches.

o SeCMER methodology steps can be executed with (significantly) less human
effort than by using traditional methods and/or manual approaches.

VALIDATION RESULTS

The evaluation of the SeCMER methodology by ATM experts highlighted the applicability
of the methodology within the ATM domain. The ATM experts pointed out that the
methodology can be applied to the ATM domain. However, they reported that the
additional value of having the SecMER conceptual model needs to be better outlined. This
was due to the fact that many concepts in the SeCMER conceptual model were new to the
ATM experts. Figure 22 and Figure 23 show the median score for each evaluation group or
criterion, respectively.

Figure 22 Median score grouped for each
criterion category

Figure 23 Median score for each evaluation
criterion

2.3.1.2 SeCMER Tool

The SeCMER tool was validated in a dedicated workshop (Rome, September 2011) with
ATM experts. The validation exercise involved a walkthrough change scenario of the ATM
case study in order to present the different aspects of the SeCMER methodology and their
tool implementation.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 43 / 187

The SeCMER tool, implemented as an Eclipse plug-in, provides basic viewing and editing
functionality to the integrated aspect models (Si*, abstract SeCMER model and Argument
model currently). Additionally, the tool supports the following mechanisms:

 On-the-fly bi-directional synchronization between SeCMER and Si* representation of
requirement models.

 Evolution rules detect violations of certain security patterns and offer automated
solutions. Violations appear as Eclipse problem markers (of level WARNING). The
suggested solutions appear as Quick Fix rules.

 Traceability is established between the argument and requirement models,
requirement changes that make an argument obsolete can be automatically detected,
and the user is notified by a message box.

Changes made in the abstract EMF representations (like the tree editor and the GMF
Tropos Diagram) are transformed and synchronized between the SeCMER and Si* aspects
on the fly. Textual formats (like the .ontology format of the SeCMER requirement model)
are more detached: updates to and from them are only propagated upon saving. The
walkthrough ATM change scenario was a means to present the different functionalities
supported and implemented by the SeCMER tool. The implemented plug-in supports the
different phases of SeCMER methodology.

VALIDATION SCENARIOS and EXERCISES

The different functionalities implemented and supported by the SeCMER tool were
presented to ATM experts by means of a walkthrough change scenario drawn from the
ATM case study. The SeCMER Tool supports Viewing and editing of requirements models.
The SeCMER tab of the tree editor of the .secmertool EMF resource (see Figure 24) allows
viewing the abstract representation of the contents of all associated models.

Figure 24 Tree editor of the abstract model

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 44 / 187

The abstract model captures the following information:

 within the .secmertool file proper, the element Integration Model is responsible for
gluing together the various other models, and contains traceability information,

 the abstract EMF model converted from the textual representation of the
requirements model,

 the argumentation model associated with the requirements model, which is actually
the abstract EMF model transparently parsed from the textual representation of the
argumentation model,

 two subtrees contained in the Si* file: the abstract Tropos Model, and the abstract
structure of the graphical diagram elements.

The tree editor can be used in conjunction with the Eclipse Properties View to manipulate
the abstract form of the SeCMER Requirements model. The editor has two more tabs. The
Tropos tab contains the Si* Tropos diagram editor to show the graphical representation of
the Si* aspect (see Figure 25). This tab can be used as a regular Si* editor. Users typically
perform most of the requirement modelling using this view, since modifications are
automatically propagated between the abstract SeCMER requirement model seen in the
tree editor, and the Si* requirements model. There are certain types of model elements,
though, that are not represented in the Si* syntax. The most important is the Protects
relationship between a security goal and an asset that can be created using the abstract
tree editor. The Argument tab (see Figure 26) shows the argument diagram for the
Argumentation model associated with the requirements model. The SeCMER tool allows
the creation of new models by the New SeCMER model wizards (see Figure 27).

Figure 25 Si* diagram on the Tropos tab

Figure 26 Argument diagram on the Argument tab

Figure 27 New SeCMER Model wizards

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 45 / 187

The SeCMER editor allows the direct manipulation and export of Aspect models. Invoking
the Export SeCMER model into .ontology file exports the requirements model into a
selected file with the .ontology textual syntax. Invoking Export Tropos / Si* model will
export the Si* aspect into the selected .tpd file. Finally, Export Argument Model extracts
the argument model in the .argument textual syntax. The SeCMER tool allows the
evaluation of some security properties based on the requirements models in a completely
automated fashion. Detected security violations show up as a Warning marker in the
“Problems” View of the Eclipse Workbench (see Figure 28). The SeCMER tool suggests
default solutions or solution templates automatically. A dialog will appear listing possible
ways to resolve the violation in question. Such solutions can be selected and executed
automatically (see Figure 29).

Figure 28 Detected security issues

Figure 29 Automatically suggested solutions

The SeCMER tool currently supports two kinds of traceability information that connect the
Argument model and the Requirements model:

 The ground facts or evidence of an argument (typically an empty argument, i.e. fact)
are Requirements model elements about which the argument states a proposition.
Many arguments (typically the composite ones) don’t have ground facts.

 Some top-level arguments may have supported goals in the requirements model. If the
argument is valid, then the goals can be considered satisfied.

These traceability links can be established both in the Argument Diagram or supported
goals in SeCMER model. Figure 30 shows a screenshot of the window for selecting ground
facts and linking them to an argument.

Figure 30 Selecting ground facts for an Argument

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 46 / 187

The point of maintaining traceability of supported goals is that reports of security
violations are suppressed from the Problems View if the violated security goal is
supported by an argument. In other words, manually verified arguments can override
automatic problem detection. While argumentation is a powerful framework for early-
stage analysis of security properties based on the requirements model, by default it
considers a single state of the model. The challenge is in detecting arguments that have
potentially been invalidated by changes, and revisiting these arguments to reflect the
evolution, while no costly revision process is required for unaffected arguments. This is
the purpose of keeping the traceability information on ground facts, so that model changes
involving the ground facts may trigger a notification that alerts the user about the
possibility that the argument may have become invalid due to the change. Figure 31 shows
a sample screenshot of the warning window detecting an invalid argumentation.

Figure 31 Detecting the invalidation of an argument

VALIDATION CRITERIA

The evaluation criteria (as identified in deliverable D1.2 [3]) for the SeCMER TOOL are
detailed as follows:

 Technical Usability:

o Look and Feel.

o Learnability/Memorability.

 User Acceptability.

 Human Effort.

 Presentation of Information.

 Domain Applicability:

o The SeCMER CASE Tool can be used to model and analyse the case study:

 Can be done by the researcher.

 Results can be understood by the stakeholder.

 Can be done by the stakeholder, at least partially.

 Can be done by the stakeholder, in complete independence.

o Additional knowledge or research is required to run the SeCMER CASE Tool.

o The SeCMER CASE Tool cannot be used in the existing ATM software
engineering processes.

o The SeCMER CASE Tool can be used only with revising the existing processes.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 47 / 187

o The SeCMER CASE Tool can be used without major revision of the processes.

o A tool for requirement evolution management is already used.

o The SeCMER CASE Tool contributes to a better support for ATM evolution
requirement management.

 Impact of a change can be assessed by the SeCMER CASE Tool.

 The SeCMER CASE Tool can present the analysis of the change in a usable format for
end-users.

VALIDATION RESULTS

The evaluation workshop (Rome, September 2011) organised for the SeCMER tool
evaluation gathered feedback by ATM experts, who assessed how the tool captures and
supports each aspect of the methodology. One of the outcomes stressed the need to
improve the user interface. A user-friendly interface would be critical in order to support
users who might have received limited training on the SeCMER methodology. The SeCMER
tool could be really useful as decision-support tool during the brainstorming phase of the
change management process applied by Air Navigation Service Providers (ANSPs) to
understand all the possible implications of changes. The evaluation outcomes allowed the
identification of specific improvements, which have been implemented into the final
version of SeCMER Tool [9]. The workshop feedback contributed to the improvement of
the tool. Numerous changes were made to the tool at the request of the ATM experts, such
as a customization of the Si* User Interface to fit SeCMER concepts and workflow. The
changes include the following:

 An improved Graphical User Interface, with user-friendly features including wizards
and export / import functionality. For instance, help functionality has been added on
how to perform the main steps of SeCMER.

 A customized adaptation of the Si* diagram features to be more aligned with SeCMER
concepts.

 An extended mapping between Si* and SeCMER to enable Si*-based modelling for all
concepts involved in the Year 2 and Year 3 demonstration scenarios. This required
that the concepts in the SI* interface to be renamed in order to avoid confusion
between the SI* view and the SeCMER view.

 New Security Patterns have been added to cover further security issues, including
violations of the least privilege principle.

 Added support for generating a dynamic list of quick fixes for a single security
violation.

 Miscellaneous bug fixes (e.g. the fault in the saving project functionality has been
fixed).

The implemented changes improved the overall usability of the SeCMER tool. Further
feedback has been collected by means of evaluation questionnaires. Figure 32 and Figure
33 show the median score for each evaluation group or criterion, respectively.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 48 / 187

Figure 32 Median score grouped for each
criterion category

Figure 33 Median score for each evaluation
criterion

2.3.2 Validation Remarks

The evaluation activities for the WP3 artefacts stress the following evaluation remarks:

1. The SeCMER methodology extends requirements engineering approaches (i.e. i* and
Problem Frames) in order to deal with requirements changes and safeguard critical
security properties.

2. The SeCMER methodology and tool require training in order to support capturing of
domain knowledge and practice.

3. ATM experts highlighted an alternative use of the methodology/tool to support
brainstorming sessions and gathering of requirements rather than modelling system
entirely – large models tend to be too complex.

2.4 WP4 Model Design

2.4.1 WP4 ARTEFACTS

The validation activities for WP4 focused on the Integration of Design Modelling Solutions.
SecureChange methodologies and artefacts support different development phases (e.g.
requirements, design, risk analysis, implementation, testing). SecureChange
methodologies support such development phases by modelling specific artefacts (e.g.
requirements model, risk analysis model) and their evolutions. WP4, within the scope of
the ATM case study, focused on the integration of such modelling artefacts for
requirements, design and risk analysis. The different SecureChange modelling artefacts
were presented to ATM experts in a focused workshop (Rome, September 2011). A
general development process tailored to security served as a means to introduce the
different modelling artefacts and their relationships.

2.4.1.1 Integration of Design Modelling Solutions

The ATM workshop (Rome, September 2011) for the WP4 Integration of Design Modelling
Solutions involved a walkthrough scenario showing different development phases and the
corresponding SecureChange modelling artefacts. The main emphasis was on the
relationships between different modelling artefacts.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 49 / 187

Figure 34 shows the engineering process presented during the ATM workshop in order to
introduce the SecureChange modelling artefacts and to highlight their relationships.

Figure 34 An engineering process for security-critical systems

Note that the process is similar to the one adopted for ongoing developments in the ATM
domain (the process is similar to the one adopted for the development of SWIM, System
Wide Information Management [5]).

VALIDATION SCENARIOS and EXERCISES

The walkthrough scenario (presented during the validation workshop) involved the
presentation of different SecureChange modelling artefacts developed for the ATM case
study. The validation activity presented proprietary industry tools (developed and
adopted by Thales) alongside SecureChange modelling artefacts in order to stress
integration among different modelling artefacts and relevance to industry practices. In
particular, the walkthrough engineering process highlighted the following engineering
development phases and the relevant SecureChange modelling artefacts:

1. Requirements Modelling that relies on goal-oriented notations to specify multi-agent
systems. Figure 35 shows a sample Si* architectural model that highlights system
resources.

Figure 35 A sample Si* model capturing system resources

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 50 / 187

2. Risk Assessment Modelling in order to estimate the impact of changes. Figure 36
shows a sample risk assessment model that supports discussing emergent security
threats due to changes.

Figure 36 A sample CORAS Risk Assessment model

3. Security Design Modelling in order to support design, implementation and testing
activities. WP4 worked in particular in the adoption of UMLSec to support system
specification.

In order to simulate the iterative nature of the engineering process, we have executed
modelling exercises of the ATM case study before and after changes. Appendix E reports
the modelling exercise.

VALIDATION CRITERIA

The evaluation criteria (as identified in deliverable D1.2 [3]) for the Integration of Design
Modelling Solutions are detailed as follows:

 Effective Usage:

o Overall well-defined system engineering process with clear steps and links.

o Compliancy with already existing tools, standard and/or work-practices in the
ATM domain.

o Computer aided support for system modelling.

 Usability and Applicability:

o The research technique can be applied on the ATM case study.

o Results can be understood by the ATM domain expert.

o Can be done by the ATM domain expert, at least partially.

 Required human effort:

o Equivalent to manual approach.

o Saves effort (in terms of time, workload and needed expertise).

o Enhance the system models (providing further details and clearer modelling).

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 51 / 187

VALIDATION RESULTS

The modelling exercises (see Appendix E) highlight the Integration of Design Modelling
Solutions with respect to an engineering process tailored to deal with security
requirements and assurance. During the focused workshop with the ATM experts, a
brainstorming and feedback session allowed us to identify specific comments concerning
the integration of design modelling solutions:

 The process is assessed as being sound and relevant to their professional work in the
ATM domain.

 The integration of the processes (i.e. security and engineering activities) is of value.
Convergence of safety and security engineering practices is recommended.

 The responsibilities of each stakeholder in the process were unclear; this would be
critical in order to integrate the engineering process within current organizational
practices. The use of models in litigations was an explicit question. Specific attention
should be set on the (legal) responsibilities related to changes.

 The current high tool diversity is an issue.

Figure 37 shows the outcome of the evaluation questionnaires collected during the
evaluation ATM workshop. It highlights a general level of acceptability of the engineering
process presented for the Integration of Design Modelling Solutions.

Figure 37 Median score grouped for each criterion category

2.4.2 Validation Remarks

The evaluation activities for the Integration of Design Modelling Solutions with respect to
the ATM case study stress the following evaluation remarks:

1. Security Engineering Processes, Tools and Models extend development processes by
focusing on security aspects.

2. The security-tailored engineering process intends to coordinate models supporting
different development activities (e.g. requirements gathering, risk assessment, design
modelling).

3. ATM experts highlighted that models and structured engineering processes might be
useful in clearly allocating security responsibilities.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 52 / 187

2.5 WP5 Risk Assessment

2.5.1 WP5 ARTEFACTS

The Risk Assessment WP contributed towards the developments of the CORAS risk
assessment methodology, modelling language and tool in order to deal with SecureChange
scenarios. The WP5 artefacts evaluated are:

1. The Risk Assessment Language and Methodology – CORAS – as its extension in
order to deal with SecureChange objectives.

2. The Risk Assessment Tool supporting the CORAS language and methodology, that is,
the notation supported by the model-driven risk analysis and the different steps
forming the risk analysis methodology.

CORAS [6] is an approach to risk analysis that consists of three tightly integrated parts,
namely the CORAS method, the CORAS language and the CORAS tool. The method is based
on the ISO 31000 risk management standard [7] and consists of eight steps. The four first
steps correspond to the context establishment, whereas the remaining four are risk
identification, risk estimation, risk evaluation and risk treatment. The method comes with
concrete tasks and practical guidelines for each step, and is supported by several risk
analysis techniques. The CORAS language consists of five kinds of diagrams, each of which
provides support for specific tasks throughout the whole risk assessment process. The
method is supported by the tool, which is an editor for on-the-fly risk modelling. The most
important kind of CORAS diagram is threat diagrams which are used for risk identification
and risk estimation. The language constructs are firmly based on an underlying well-
defined conceptual framework for reasoning about risk, and includes: human and non-
human threats, vulnerabilities, threat scenarios, unwanted incidents and assets. Threat
diagrams are used for on-the-fly risk modelling during structured brainstorming that
involves personnel with expert knowledge about the target of analysis. In such a setting,
the diagrams must be intuitive and easy to understand, also for people with little technical
background and little experience in risk analysis. For this reason, the CORAS language
constructs are graphical, easily understandable symbols. Figure 38 shows the symbols for
the main CORAS concepts.

Figure 38 Main CORAS concepts

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 53 / 187

CORAS has been generalized to provide specialized support for assessing risks of changing
and evolving systems. When systems change, so do risks and therefore need to be
modelled and analyzed as such. In the following we describe selected parts of the
generalized CORAS approach and exemplify with parts of an ATM case study. We focus on
the identification and modelling of changing risks since this is the core part of the process.

CONTEXT ESTABLISHMENT. The context establishment includes making the target
description, setting the focus and scope of the analysis, identifying the assets, and setting
the risk evaluation criteria. In the setting of evolving systems, the context establishment
moreover includes the specification of the changes to the target, the changes in assets or
asset values, and the changes to the evaluation criteria, if any. When making the target
description we need to describe as precisely as possible at a suitable level of abstraction
the structure and behaviour of the target of analysis. This includes the actors, roles and
components, the work processes and interactions, the interface with the environment, and
so on. A well-understood and suitable modelling language should be used for this purpose,
for example the UML. For changing and evolving systems we need first to make a target
description of the system as is. Then the relevant change requirements must be described
as precisely as possible. Using the target description as-is (before changes) and the
specification of the change requirements, the target description of the system to-be (after
changes) is made.

The context establishment also involves identifying and documenting the assets with
respect to which the risk analysis is to be conducted. An asset is something of value that
must be protected, and can, for example, be integrity of information, privacy and human
life and health. In the ATM example the assets were based on the identified security
properties of Information Protection (confidentiality) and Information Provision
(availability). For changing and evolving systems, we furthermore need to identify any
possible changes to the assets, for example new assets that emerge or changes in asset
values or priorities. A further part of the context establishment is to define the scales for
likelihood and consequence, the values of which are used during risk estimation for
determining risk levels. In the ATM example we based the scale on the EUROCONTROL
safety regulatory requirement (ESARR4) [8]. Figure 39 shows the risk evaluation criteria.

Figure 39 Risk evaluation criteria

RISK IDENTIFICATION. Risk identification using CORAS is conducted as a structured
brainstorming involving personnel with firsthand knowledge about the target of analysis.
By conducting a walkthrough of the target description, risks are identified by
systematically identifying unwanted incidents, threats, threat scenarios and
vulnerabilities. The results are documented by means of CORAS threat diagrams. So far,
the methods and techniques are as for traditional risk analyses. When dealing with
change, a guiding principle for the generalized risk analysis method is that only the risk
analysis results that are affected by the system changes should be assessed again.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 54 / 187

We therefore provide techniques and language support for tracing changes from the target
system to the risk model so as to enable the identification of the parts of the risk models
that are not affected by changes and therefore maintain their validity under change. Figure
40 shows a fragment of a CORAS threat diagram resulting from the identification of
changing risks.

Figure 40 Threat diagram with changing risks

Compared with the standard CORAS language, there are two main language extensions to
support the risk analysis of evolving systems. First, the rectangle icons with the system
diagram symbol (e.g. the one named Task T1 – the first task in the arrival management
work process) exemplify the new construct for referring to the target of analysis. Second,
the threat diagram constructs of threat, unwanted incident, asset, etc. are generalized to
three modes with different appearances, namely the modes before, after and before-after.
The before constructs are in gray shade and dashed outline and represent parts of the risk
picture that are valid only before the changes. The after constructs are in colour and solid
outline and represent parts that are valid only after the changes. The before-after
constructs are two-layered and represent parts that are valid both before and after
changes. The explicit references to the target system in the threat diagrams facilitate the
identification of the parts of the risk picture that are affected by system changes. For
example, in the ATM risk analysis, the radar was not subject to the ATM system changes.
Hence, the vulnerability, Insufficient radar maintenance, and the threat scenario, Loss of
radar signal in MRT (multi-radar tracking), are maintained under change. The threat
scenario Monitoring of A/C (aircraft) in the sector fails, on the other hand, is affected due
to the introduction of the ADS-B (automatic dependent surveillance-broadcast).

The different appearance of the three modes of the language constructs facilitates the
immediate recognition of the risk changes that are modelled. This feature is an important
part of supporting the risk identification brainstorming and for appropriately
documenting the results. Furthermore, in order to highlight the risk changes, the CORAS
tool implements the functionality of changing between the views of before, after and
before-after. This is illustrated in Figure 41 with the before view to the left and the after
view to the right. An important feature of our generalized CORAS language is of course the
support for giving a combined representation of the risks before and after changes as
shown in Figure 40.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 55 / 187

Figure 41 Two views on changing risks

RISK ESTIMATION. The risk estimation basically amounts to estimating likelihoods and
consequences for unwanted incidents. Usually, we also estimate likelihoods for threat
scenarios in order to get a better basis for estimating the likelihood of unwanted incidents
and to understand the most important sources of risks. To the extent that risks before
changes are completely unaffected by the changes, the risk estimates need not be
conducted twice for these risks. Diagram elements of mode before-after are assigned a
pair of likelihoods. The former denotes the likelihood before the changes. The latter
denotes the likelihood after the changes. Diagram elements of mode before or mode after
are assigned only a single likelihood. The distinction is likewise for the consequence
estimates. Hence, the threat diagrams document not only risks that emerge, disappear or
persist, but also how risk levels change. For example, the threat scenario Monitoring of
A/C in the sector fails is assigned the likelihood likely before the changes and the
likelihood possible after the changes. The likelihood drops due to the introduction of the
ADS-B. Information provisioning fails is an unwanted incident, and therefore constitutes a
risk. Its likelihood is possible both before and after the changes, while its consequence for
the Availability asset is minor as annotated on the relation between the unwanted incident
and the asset.

RISK EVALUATION. During the risk evaluation we first calculated the risk levels by using
the risk matrix exemplified in Figure 1 and the likelihood and consequence estimates from
the risk estimation. We then compare the risk levels with the risk evaluation criteria to
determine which risks that must be treated or evaluated for treatment. The risk
estimation is supported by CORAS risk diagrams which we do not show here as the focus
is on threat diagrams and risk identification. Risk diagrams show the changing risks
together with the threats that initiate them and the assets they harm. The unwanted
incident Information provisioning fails, for example, has the likelihood possible and the
consequence minor before and after the ATM system changes, which yields a low risk
level.

RISK TREATMENT. The purpose of the risk treatment is to identify options for risk
mitigation for the unacceptable risks. In the setting of evolving systems, the treatments
should ensure that an acceptable level of risk is maintained under planned changes or
foreseen evolutions. This final step of the process is conducted as a structured
brainstorming with a walkthrough of the threat diagrams documenting the unacceptable
risks. The task is supported by CORAS treatment diagrams.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 56 / 187

The WP5 Risk Assessment artefacts have been evaluated as follows:

 Workshop (Rome, June 2011) with ATM Experts to present, analyse and review the
Risk Assessment Methodology. Possible foreseen exploitation in the SESAR
Programme.

 Technical and operational workshop (Rome, June 2011) to evaluate the completeness,
expressibility and flexibility of the Risk Modelling Language.

 Interactive Demo of the WP5 Prototype and final tool (Rome, September 2011). Some
simple modeling activities carried out by ATM experts with the support of WP5
technical partners.

 Off-line questionnaire evaluation by ATM stakeholders of WP5 Risk Assessment
Methodology and Tool description to collect feedback about the applicability and
effectiveness of WP5 artefacts in ATM.

The remainder of this section reports the evaluation results of the CORAS Risk Assessment
Language, Methodology and Tool.

2.5.1.1 Risk Assessment Language and Methodology

VALIDATION SCENARIOS and EXERCISES

The validation activities concerning the CORAS risk assessment language and
methodology involved a dedicated workshop (Rome, June 2011) with ATM experts. The
workshop consisted of a walkthrough ATM change scenario in order to perform a risk
assessment supported by the CORAS methodology. The Risk Assessment Language and
Methodology were further evaluated by the offline collection of questionnaires. The
CORAS methodology and the requirements changes were presented together with
relevant questionnaires (collected in the period November-December 2011, concerning
with Safety Culture, Artefact Evaluation and Evolutionary Risk Analysis) to ATM experts.
This allowed us to question any relationship between ATM safety cultures and validation
aspects of the CORAS Risk Assessment Language and Methodology with respect to the
requirements changes.

VALIDATION CRITERIA

The main case study in WP5 is ATM. It is therefore the ATM case study that provides the
most thorough basis for the evaluation.

 Effective Usage: The criteria of effective usage of the artefacts require that the
artefacts can be applied in the ATM case study. We provide evaluation criteria for
applicability and for the required human effort. The degree of fulfilment is given by
categorizing the level of achievement of applicability and effort.

Risk Assessment Methodology

 Applicability: The first evaluation criterion is that the risk assessment methodology
and its techniques can be applied on the ATM risk assessment. We operate with the
following increasing levels of fulfilment:

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 57 / 187

o The ATM risk assessment can be conducted by the researchers developing the
methodology.

o The report documenting the results of the case study can be understood by the
relevant ATM stakeholders such as the external risk assessment participants.

o The ATM risk assessment can be conducted only partially by a risk analyst
trained in traditional risk assessment methods.

o The ATM risk assessment can be fully conducted by a risk analyst in complete
independence.

 Human effort: The second evaluation criterion is that the risk assessment
methodology and its techniques can produce the desired results with less effort than
by using alternative, traditional methods. We operate with the following increasing
levels of achievement:

o Conducting the ATM risk assessment is doable, no matter the level of required
human effort.

o Conducting the ATM risk assessment is doable with the same level of human
effort as traditional methods and/or manual approaches.

o The ATM risk assessment can be conducted with (significantly) less human
effort than by using traditional methods and/or manual approaches.

Risk Assessment Language

 Applicability: The first evaluation criterion is that the risk modelling language can be
applied on the ATM case study for modelling and assessing changing risks. We operate
with the following increasing levels of fulfilment:

o The consistent and syntactically correct modelling, as well as the semantically
correct interpretation, of the ATM risk models can be conducted by the
researchers developing the risk modelling language.

o The ATM risk models can be understood by the relevant stakeholder both
during the risk identification and assessment, and as part of the
documentation of the results.

o The consistent and syntactically correct modelling, as well as the semantically
correct interpretation, of the ATM risk models can be conducted only partially
by a risk analyst trained in traditional risk modelling.

o The consistent and syntactically correct modelling, as well as the semantically
correct interpretation, of the ATM risk models can be conducted by a risk
analyst in complete independence.

 Human effort: The second evaluation criterion is that the modelling of changing risks
in the ATM case study can be conducted with less effort that by using traditional risk
modelling languages or techniques. We operate with the following increasing levels of
achievement:

o Conducting the modelling of changing risks is doable, no matter the level of
required human effort,

o Conducting the modelling of changing risks is doable with the same level of
human effort as using traditional risk modelling languages or techniques,

o The modelling of changing risks can be conducted with (significantly) less
human effort than by using traditional risk modelling languages or techniques.

Similar validation criteria apply to the Tool supporting the Risk Assessment Language and
Methodology.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 58 / 187

VALIDATION RESULTS

The first validation workshop (Rome, June 2011) concerned with the evaluation of the
CORAS risk analysis language and methodology. The main aims were to present how the
CORAS approach deals with requirements changes and to assess the concepts underlying
the methodology. CORAS models and related requirements changes drawn from the ATM
case study were presented to ATM experts. The risk identification and risk estimation
make active use of CORAS threat diagrams. These diagrams support the identification,
modelling and documentation of unwanted incidents, the assets that are harmed, the
threats that initiate unwanted incidents, the threat scenarios that are initiated by threats
and lead to unwanted incidents, as well as the vulnerabilities that are exposed. Because
the CORAS threat diagrams are firmly based on an underlying conceptual framework for
reasoning about risk, the ATM experts were exposed to emerging issues that must be
discussed during risk analysis and how they are related. Moreover, when shifting from
before changes to after changes, the ATM experts were exposed to threat diagrams to
identify changes to risks and explicitly model such changes. We collected feedback and
comments of ATM experts by questionnaires and brainstorming sessions during the
workshop. Figure 42 and Figure 43 show the median score for each evaluation group or
criterion, respectively.

Figure 42 Median score grouped for each
criterion category

Figure 43 Median score for each evaluation
criterion

In order to consolidate the validation of the CORAS risk assessment language and
methodology, we distributed the ATM change requirements, the description of the CORAS
methodology and relevant evaluation questionnaires (i.e. Safety Culture, Artefact
Evaluation and Evolutionary Risk Analysis) to ATM experts. Figure 44 and Figure 45 show
the median score for each evaluation group or criterion, respectively.

Figure 44 Median score grouped for each
criterion category

Figure 45 Median score for each evaluation
criterion

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 59 / 187

Figure 46 and Figure 47 show the safety culture and the evolutionary risk analysis
profiles, respectively.

Figure 46 Safety Culture profile by median score

Figure 47 Evolutionary Risk Analysis

This allowed us to generalise the validation results with respect to social and
organisational factors like safety culture and risk perception. The comparison of different
perspectives (i.e. Safety Culture, Artefact Evaluation and Evolutionary Risk Analysis)
highlights some analytical aspects of the CORAS methodology with respect to evolving
risks. In particular, Figure 47 highlights those evolutionary risk analysis criteria that ATM
experts agreed (i.e. 1 and 11) or disagreed (i.e. 6, 7 and 12) mostly:

[1] This Area of Changes increases the likelihood of well-understood current hazards
that will exist in the future.

[6] This Area of Changes renders the projected safety systems more brittle to off-
nominal conditions.

[7] This Area of Changes decreases safety levels during non-normal or emergency
operations within the projected Future.

[11] This Area of Changes creates new conditions that are currently not part of the
design assumptions for the Future systems and procedures.

[12] This Area of Changes results in decreased skill levels and judgment among
operators of Future systems.

In summary, the CORAS language and methodology supports the analysis of how risk
changes due to requirements changes.

2.5.1.2 Risk Modelling Tool

VALIDATION SCENARIOS and EXERCISES

The CORAS Risk Modelling Tool was validated in a dedicated workshop (Rome, September
2011) with ATM experts. The WP5 artefacts validated are the CORAS method for analyzing
changing and evolving risks, the CORAS language to support the modelling and assessment
of changing and evolving risks, and the CORAS tool that supports the method and risk
modelling. The validation activities focused on risk identification and risk estimation. The
ATM experts were given the target of analysis, the security properties, the risk evaluation
criteria and the change requirements.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 60 / 187

The selected focus ensured immediate hands-on active use of core parts of all of the three
WP5 artefacts ATM experts were asked to work using the artefacts and conducting the
risk assessment on their own. They were able immediately to start building threat
diagrams using the tool during structured brainstorming. They had a first iteration where
they did risk identification and risk modelling before changes, as well as risk estimation. In
the second iteration, they did risk identification and risk modelling after the changes. ATM
experts by the hands-on experience got a good understanding of the CORAS method and
how the method deals with change. The CORAS tool was actively used all the time, since it
was used for building all the threat diagrams and annotating the diagrams with the
likelihood and consequence estimates. The validation exercises cover the most important
features of the CORAS tool. Figure 48 shows a sample screenshot of the CORAS tool. It
shows an example of use of tool to do the risk modelling using the language in conducting
the risk identification and risk estimation of the method. In particular, it shows an
example of use of the WP5 risk assessment artefacts in identification and estimation of
changes to risks.

Figure 48 Sample screenshot of the CORAS tool

When conducting the hands-on session, the roles of the participants should be clearly
defined. In a CORAS risk assessment, we have on the one hand the analysis team, and on
the other hand the target team. The analysis team is commonly of two persons, one in the
role of the analysis leader and one in the role of the analysis secretary. The analysis leader
is responsible for leading the discussions and directing the participants during the risk
identification and risk estimation. The analysis secretary is responsible for documenting
the results by doing the on-the-fly risk modelling using the CORAS tool. The target team is
commonly representing the customer of the analysis and typically consists of 4-6 persons.
One of the roles is the decision maker (e.g. CEO, head of department, or the like) who is
responsible for the approval of the focus and scope of the analysis (e.g. what the assets to
be addressed are, what the risk evaluation criteria are). The other roles are typically users,

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 61 / 187

domain experts, consultants, developers, security officers, etc. These are people with
different insights into and experience with the target of analysis, and contribute to the
identification of threats, vulnerabilities, unwanted incidents, and so on. We identified
specific roles for the ATM experts. In order to evaluate the CORAS risk assessment, we
divided participants into four teams, on the one hand the analysis team and on the other
hand the target team. Each team were assigned roles to simulate an actual risk assessment
setting: Analysis leader, Analysis secretary and Domain experts. The risk assessment was
conducted in two iterations:

1. Identify, estimate and document risks before changes.
2. Identify, estimate and document risks after changes.

VALIDATION CRITERIA

There are not specific validation criteria for the CORAS Risk Modelling Tool. The validation
criteria are drawn from the ones identified for the CORAS Risk Modelling Language and
methodology – similar validation criteria apply to the Tool supporting the Risk
Assessment Language and Methodology.

VALIDATION RESULTS

The overall evaluation of the CORAS Risk Modelling Tool was positive taking into account
that risk assessment usually is conducted by people who are trained in using the artefacts.
Figure 49 and Figure 50 show the median score for each evaluation group or criterion,
respectively.

Figure 49 Median score grouped for each
criterion category

Figure 50 Median score for each evaluation
criterion

ATM experts found easy to immediately start the risk identification by using the tool. The
CORAS tool can be used with little prior introduction. However, conducting the assigned
tasks requires a more thorough understanding of the CORAS method, the underlying
concepts and the language. Like many other modelling approaches supported by a
graphical notation, CORAS models easily become complex and messed up when dealing
with changes. Conducting the assigned risk analysis tasks correctly with little training
would be easier with further functionality for support in the tool, e.g. pop-ups with
modelling tips when moving the mouse pointer over constructs, guidance in the tool on
the pragmatics of the language with respect to the CORAS method, and automated support
for systematically generalizing the models to changing risks. Some changes (e.g. flagging
of changes, automated support for maintaining consistency when changes are introduced,
and systematic tracing of changes over the diagrams) to the CORAS tool have been
identified in order to address the evaluation feedback.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 62 / 187

2.5.2 Validation Remarks

The evaluation activities for the WP5 artefacts stress the following evaluation remarks:

1. The CORAS framework resulted quite mature and able to deal with changes affecting
security properties.

2. Different experts might benefit from the support provided by the CORAS methodology
and approach.

3. Supporting different views (before and after changes) allows experts to focus during
risk analysis exercises and to scrutinise how changes affect critical security properties.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 63 / 187

3 HOMES CASE STUDY

3.1 VALIDATION ORGANISATION AND CONDUCT

This section describes the validation activities and results based on the HOMES case study.
The validation organisation has been tailored to capture specific validation objectives with
respect to the validate artefacts and HOMES domain features. The overall validation
organisation, activities and objectives build over the previous WP1 deliverables [1][2][3],
which have defined the scope and feasibility of SecureChange artefacts.

3.1.1 HIGH–LEVEL OBJECTIVES

The validation objectives for the HOMES case study have been focused on the effective
usage of the artefacts (including their applicability and degree human effort involved), as
well as specific industrial criteria such as perceived value, performance, or usability. Table
3 summarises how these objectives are mapped to the validated artefacts.

Table 3 High-Level Objectives

 WP2 artefacts WP 6 artefacts WP7 artefact

 SeAAS
Change

Patterns
VeriFast SxC TTS

Effective Usage

Applicability X X X X X

Human Effort X X X X X

Specific industrial criteria

Value
appreciation

 X

Flexibility X
Effectiveness X X

Usability X X

Performance X X

Automation X

Completeness X

These high-level objectives are decomposed into measurable indicators, as shown later in
this section. The main validation activities fall into three major categories: Methodology
Evaluation (modelling), Walkthrough and Tool Live Demo with HOMES Experts. Figure
51 shows how these categories are distributed across artefacts.

Methodology evaluation consisted of modelling exercises focusing on specific changes and
security requirements in order to refine and consolidate the underlying modelling
languages and their methodologies, respectively. Walkthrough activities involved step-by-
step evaluation of the SecureChange methodologies with HOMES experts. This allowed to
assess the proposed methodologies with domain experts and to identify alternative usages
(with respect to current practices within the HOMES domain).

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 64 / 187

Finally, tool live demo activities and exercises allowed the validation (in terms of usability
and acceptance by HOMES experts) of the tools supporting the SecureChange
methodologies. Figure 51 shows the subsequent activities and their focus on the
SecureChange artefacts forming the HOMES validation.

Figure 51 HOMES validation

The remainder of this section will describe the validation outcomes for each WP artefact.

3.2 WP2 Architecture and Design Process

3.2.1 WP2 ARTEFACTS

The validation activities for WP2 focused on two artefacts:

 A complete SeAAS (Security as a Service) deployment for the HOMES case study
supporting the addition of new security functionalities.

 Change Patterns, a tool to assess the impact of trust changes into the system.

3.2.1.1 Security-As-A-Service (SeAAS)

This section reports on the validation of the Security-As-A-Service (SeAAS) artefact from
WP2 on the HOMES scenario. Security as a service is an architectural blueprint that
transposes the model of Software as a Service to the security domain. This results in a

SxC OSGi

conceptual model

Change Patterns

methodology and

tools

TTS language and

methodology

Security as a Service

Integration in

HOMES

Change Patterns

methodology and

tools

VeriFast off-device

program verifier

TTS language and

methodology

Security as a Service

Implementation

HOMES Validation

Methodology Evaluation

(Modelling)

Walkthrough with

HOMES Experts

Tool Demo with

HOMES Experts

W
P

2
W

P
6

W
P

7

VeriFast off-device

program verifier

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 65 / 187

robust architecture with enough flexibility to cope with a broad variety of changes, thus
supporting long-lived, evolving systems.

VALIDATION SCENARIOS and EXERCISES

For the Security as a Service artefact in the HOMES scenario, the validation covered the
change requirement of Bundle Lifecycle Operations, in combination with the security
property of Security Expandability. The change scenario consisted on a degradation of
trust between a network operator and a third party service provider, which forced the
deployment of new security functionality in the form of a non-repudiation protocol.

The validation exercise for this artefact consisted of the deployment of SeAAS
infrastructure for the HOMES case study, along with a new security service implementing
a non-repudiation protocol. A sample service consisting on a news feed service was also
added to the platform and integrated with this non-repudiation functionality. This
deployment was performed by UIB, with the assistance of TID. A detailed description of
the HOMES-SeAAS architecture can be found in [1].

On this HOMES-SeAAS architecture, TID domain experts conducted a series of
experiments according to the validation criteria previously defined. The experiments
included observing the performance of the non-repudiation protocol for the feed service
through network and system traces, adapting different OSGi services to use the SeAAS
architecture and non-repudiation functionality, and managing the SeAAS configuration
both using a manual approach and a model-driven configuration methodology also
developed for the SeAAS artefact.

VALIDATION CRITERIA

Two validation criteria have been defined for the SeAAS artefact, related to its effective
usage: applicability, and human effort. These have been further divided into measurable
indicators, as shown below.

Applicability

 SeAAS architecture can be deployed on the HOMES case study.
 Stakeholders can configure the SeAAS infrastructure.
 Stakeholders can adapt and extend the SeAAS infrastructure and the model-driven

configuration approach.
 Service providers can use SeAAS in HOMES services.

Human Effort

 Model-based approach configuration effort.
 Extension effort.

A detailed discussion of the evaluation for each sub-criterion is provided below.

SeAAS architecture can be deployed on the HOMES case study

The validation exercise proved that involved researchers can apply the SeAAS approach to
an OSGi-based home gateway like the one presented in the HOMES scenario. UIB and TID
were able to deploy a SeAAS architecture on the HOMES platform, along with a non-

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 66 / 187

repudiation security service and basic security services like cryptography, time stamp, or
logging, and integrate them with a sample service consisting of a news feed.

It should be noted that the HOMES entities (such as home gateway, network operator, and
service provider) in the validation exercise were implemented as OSGi platforms running
on Linux virtual machines, for convenience. This allowed replicating the validation
environment and testing it at different locations with ease. Nevertheless, this same
deployment could be translated to actual home gateway hardware, since the implemented
OSGi bundles can fit even in the limited footprint of these devices.

Stakeholders can configure the SeAAS infrastructure

Once the SeAAS architecture was deployed on HOMES, the platform was handed over to
TID domain experts to experiment with. One of the tests they performed consisted on
managing the security configuration for the SeAAS infrastructure in combination with the
sample news feed service, confirming that such configuration was feasible for the
stakeholder.

Two configuration approaches were supported in this exercise. The first one was a
declarative security approach, where a series of policy files associated with each bundle
indicated the security services associated with that bundle, and their configuration. On the
second, a model-driven security approach, a GUI was provided for the system
administrators to easily choose from the available security services and configurations for
a given bundle – after that, the model driven configuration tool would automatically
generate the corresponding policy files. The domain experts were able to use both
approaches without assistance (other than the architecture documentation), though they
found the model-driven tool to be easier to use.

Service providers can use SeAAS in HOMES services

The first sample service to run on the HOMES SeAAS architecture was a news feed service
implemented by TID with assistance from UIB. This served to prove that it is possible to
develop OSGi services for that platform that benefit from the SeAAS approach, with some
assistance from the researchers. A further experiment consisted on taking an OSGi
developer with no prior experience with SeAAS (but access to the HOMES SeAAS
documentation), and have her create a simple service which could be integrated with the
SeAAS non-repudiation protocol. This was performed successfully, demonstrating that a
service provider acting in complete independence could benefit from SeAAS
functionalities.

Stakeholders can adapt and extend the SeAAS infrastructure and the model-driven
configuration approach

Due to time constraints, it was not possible for TID to run experiments on the extension of
the SeAAS infrastructure. That said, after studying the SeAAS architecture and source
code, TID experts have concluded that extending this architecture (e.g. to implement new
security services, or new options for existing security services) should not be particularly
challenging, provided they have access to a sample security service over SeAAS, like the
non-repudiation protocol, to use as reference.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 67 / 187

Any future extension to the SeAAS infrastructure should also be translated to the model
driven security tool. Extending the MDS tool relatively simple, since it just requires
adjusting the system meta-model with the new changes, and creating a template for the
policy file required after the change. Though this has not been possible to try in practice
either, we believe it to be feasible without much effort.

Model-based approach configuration effort

On the validation exercise, we found that configuring the infrastructure using the model-
based security tool was easy and quick. Using this tool, changing the security services
associated with a bundle or the configuration parameters of these security services only
took a few clicks. It was an intuitive process thanks to the friendly graphical user interface.
Overall, the configuration process using this tool was considerably faster than under the
declarative security approach (i.e. editing policy files by hand), particularly for less
experienced users. That said, experienced system administrators can typically make more
efficient use of text-based editing tools, thus reducing the difference between the
declarative and model-based approach – though the model-based tool should still require
less effort, even in that scenario.

One point that couldn’t be explored in depth in our validation exercises is the behaviour of
both approaches when configuring more elaborate scenarios. The setup we used
represented a simplified home gateway with just a couple of services, whereas actual
deployments tend to have a much higher number of services, with the corresponding
increase in system configuration complexity. Overall, the results observed in this simple
scenario (i.e. model-based configuration performs better) should remain valid regardless
of the amount of services in the system, but a more realistic scenario might reveal
interactions or bugs that are not observable this way.

Extension effort

As has been explained above, it has not been possible to experiment with infrastructure
extension during the validation exercises, so we have no direct data on the amount of
effort required by the extension process. That said, both the SeAAS architecture and the
model-driven security solution have been designed with extensibility in mind, and have a
series of features that should reduce extension effort compared with other approaches. As
an example, SeAAS allows the introduction or modification of security services to cope
with new requirements without needing to propagate the changes to every endpoint in the
system, as happens in endpoint security or declarative security. Likewise, from a
configuration standpoint, the model-driven security approach allows us to introduce
changes just by adjusting meta models and policy templates, since the tool takes care of
the generation and distribution of any new policy files.

VALIDATION RESULTS

An overview of the validation results is shown in the following table (Table 4). The results
can be summarized as follows. The applicability criteria for the HOMES scenario has been
demonstrated to be met for the most part: SeAAS can be deployed on an OSGi home
gateway, and it is possible for TID to configure this infrastructure, and for service
providers to use its security functionalities on their services – without external assistance.
The one point regarding applicability that hasn’t been proved by experience (due to time

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 68 / 187

constraints) is TID’s ability to adapt and extend SeAAS, though analysis strongly suggests
that this should in fact be feasible for the stakeholder.

As for the human effort criteria, the validation exercises have shown that the model-based
configuration approach allows the configuration of security parameters in the HOMES
scenario with less effort than alternate approaches like declarative security. The extension
effort is also believed to be reduced by the use of a SeAAS architecture and model-based
configuration.

Table 4 Security-As-A-Service (SeAAS) validation results

Applicability Can be applied by stakeholder with
little or no assistance

A SeAAS architecture can be deployed on the
HOMES case study

Yes

Stakeholders can configure the SeAAS
infrastructure

Yes

Service providers can use SeAAS in HOMES
services

Yes, in complete independence

Stakeholders can adapt and extend the SeAAS
infrastructure and the model-driven
configuration approach

Feasible (not tested)

Human effort Compares favourably to
declarative approach

Model-based approach configuration effort More efficient than declarative
approach

Extension effort Should be more efficient (untested)

Industrial considerations

Although the validation exercises for the HOMES-SeAAS infrastructure have focused on
the use of this methodology in isolation, practical development tends to involve a wide
variety of processes and tools, and it’s important to know how these can be integrated.
With relation to this, there has been work on the integration of different artefacts for the
HOMES scenario, resulting in a demonstration case study which showcases an Integrated
Process and an integrated MoVE tool. In this case study, the Security-as-a-Service
architecture and model-driven security tool have been used successfully alongside the
CORAS risk modelling methodology, and UML-based system modelling. Thus, it is
demonstrated that SeAAS can work in combination with other methodologies and tools in
a realistic development scenario.

3.2.1.2 Change Patterns

The WP2 artefact Change Patterns consists on a methodology to assess and minimized the
impact of changes in the architecture of a system, as well as a tool to assist in its use. In the
context of the HOMES scenario, Change Patterns has been applied to deal with changes in
the trust relationships between actors in the system.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 69 / 187

VALIDATION SCENARIOS and EXERCISES

For the Change Patterns artefact in the HOMES scenario, the validation covered the change
requirement of Bundle Lifecycle operations, in combination with the security property of
resilience to trust changes. In this artefact, a change scenario referring to the degradation
of trust between a network operator and a 3rd party service provider is defined. Based on
this change scenario, a catalogue of change patterns is presented to help developers
handle these changes in the HOMES scenario.

The validation exercise for this artefact consisted in a workshop where HOMES domain
experts from the stakeholder (TID) applied the Change Patterns methodology to a series of
changes in the HOMES architecture, assisted by researchers from KUL. After this
workshop, which was carried out via videoconference and recorded for posterior analysis,
the domain experts filled a questionnaire about their experience with the methodology,
and participated in a series of interviews with the researchers.

Appendix G reports a detailed description of the workshop.

VALIDATION CRITERIA

Two categories of validation criteria have been defined for the Change Patterns artefact:
Effective usage (which includes applicability and human effort), and specific industrial
criteria (which in this case include the appreciation of value for the stakeholder). These
criteria have been further decomposed into measurable indicators, as shown below.

Applicability:

 Change scenarios apply to HOMES.
 Suggested solutions can be applied in HOMES.
 The methodology can be applied in HOMES.

Human Effort:

 Learning effort.
 Modelling effort.
 Preparation effort.
 Change Implementation effort.
 Overall effort.

Value appreciation:

 Anticipates changes.
 Saves effort.
 Guides design decisions.

A detailed discussion of the evaluation for each sub-criterion is provided below.

Applicability

The applicability criterion determines whether the change patterns methodology can be
successfully applied to the HOMES scenario. For the purposes of evaluating this criterion,
we have decomposed the artefact into three parts: the process of the methodology, the
defined change stories, and the set of suggested solutions associated with each pattern.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 70 / 187

Change scenarios apply to HOMES.

The catalogue of patterns defined for the artefact focuses on change scenarios related with
evolution of trust relationships. During the workshop, several examples of how these
generic scenarios can apply to the HOMES architecture were shown – evolving trust being
one of the primary security concerns for HOMES, to begin with. The trust evolution
patterns prove that change scenarios that are relevant for HOMES security exist. However,
Change Patterns is a generic methodology that can be applied to other kinds of changes, as
long they happen commonly in software architectures and have generic solutions. This
means that more patterns could be defined to apply the methodology in other
environments that aren’t as concerned with trust relationship changes. It also suggests
that the use of Change Patterns in HOMES could be expanded to cover other types of
changes.

Suggested solutions can be applied in HOMES

In order for Change Patterns to be useful for a project, not only do the change scenarios
need to be compatible with the architecture of that project, but the solutions suggested by
each pattern need to be applicable as well. In the workshop, we found that for all the
patterns that were applied, one or more of the suggested solutions were viable in the
context of HOMES. Due to time limitations, not every pattern in the catalogue was used
during the workshop, but our analysis indicates that each pattern in the catalogue has at
least one solution that can work for HOMES, either directly or with minor modifications.
Note that the Change Patterns methodology is not guaranteed to provide the best solution
for any given change, since that is highly context-dependent and falls outside the scope of
the artefact. Rather, the patterns give a set of common, generic solutions that are known to
work in many environments. These solutions should be used as a starting point to guide
the design of the architecture, and may later be refined or replaced if optimization is
required for the system.

The methodology can be applied in HOMES

In the validation workshop, it was verified that the Change Patterns methodology can be
applied on a home gateway architecture such as the one presented in the HOMES scenario.
Leaving aside the validity of change stories and suggested solutions (discussed in the
previous sections), the process followed by the methodology (which can be summarized
as applying patterns to prepare an architecture for future changes during design, and use
pre-defined solutions when implementing these change) can easily be translated to any
software project. One important factor to take into account regarding the applicability of
Change Patterns in an industrial context is that this methodology is intended to be used as
early as the design phases of a project. This means that the approach is definitely suitable
for new projects. However, it remains to be seen whether the approach also leads to
benefits for projects that are already in development or maintenance.

Human Effort

The level of human effort required by this artefact has been evaluated considering five
separate categories: the learning effort, the effort associated with the generation of
models required by the methodology, the effort required at the preparation phase, and the
effort required for implementing a change. Finally, an overall estimation of the effort to
implement the methodology is provided and evaluated.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 71 / 187

Learning effort

In the validation exercise, it took TID experts 6 hours to start applying the methodology
with assistance. This includes learning of i*, SI*, change patterns methodology and
catalogue, and top-cased modelling tool. After this time, our experts were able to
successfully complete the exercises presented in the validation workshop, though they
weren’t fully confident of the results, and had to spend additional time checking the
documentation. We estimate 10-12 hours, including some practical exercises, before a
developer is able to apply the methodology independently on a real project. If we were
using an extended pattern catalogue covering more than the 8 patterns defined for
SecureChange, the learning effort would increase accordingly. We estimate that between 2
and 3 hours are required to become familiar with a set of 8 patterns, though this would
likely be lower for a developer that has already studied many patterns. The degree of
similarity between patterns in a set also affects learning effort, to a lesser degree.

Modelling effort

One of the requirements of the Change Patterns methodology is to have an alternate
representation of the architecture using the SI* modelling language, to show the trust
relationships between actors. This involves an additional modelling effort, which on our
experience approaches a couple of hours for the initial model, and a few minutes for
changes implemented by following a pattern. An issue that we did not have enough time to
observe properly is how the SI* model is affected by changes that are unrelated to the
defined patterns. This is highly dependent on context, but whenever the system is subject
to a change that affects requirements or architectural assumptions (whether or not that
change matches an existing pattern), the SI* model will need to be updated. Furthermore,
it is hard to predict the difficulty of such a model update when no pattern is applied. We
believe that the overall effort for model maintenance would remain relatively low
nevertheless, but some direct experience applying the methodology over a real project
would likely be needed for an accurate estimation.

Preparation effort

During the preparation phase of Change Patterns (which should coincide with the design
phase of the project), the change scenarios most likely to occur in the architecture are
selected, and solutions are chosen for them following the suggestions in their respective
patterns. Applying each of these patterns in this step usually involves introducing minor
changes in the model and implementing them in the architecture. This is not intended to
take a significant level of effort – at this point the changes consist mostly on preparing
interfaces, adding stubs, and ensuring that certain security services can be met in the
future. Though the preparation cost for each individual pattern should remain low, the
overall preparation effort for Change Patterns is proportional to the number of applied
patterns. This means that there is a risk of wasting resources (and needlessly complicating
the architecture) by applying an excessive number of patterns. On the other hand, we
want to make sure that the most likely changes for our architecture are adequately
covered by a pattern. Thus, developers need to strike a balance that maximizes pattern
coverage while minimizing the risk of unused patterns. Given that the cost to prepare for a
pattern is relatively low, whereas the potential benefit if that change scenario comes up is
considerable, we’d recommend to err on the generous side (i.e. prepare for more patterns)
in case of doubt.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 72 / 187

Change Implementation effort

The advantages of the Change Patterns methodology become evident at the change
implementation phase, since whenever a change scenario comes up that matches a pattern
added to the system during preparation, the effort to implement the change will be
noticeably reduced. At this point, the design of the solution should be mostly
accomplished, and a developer should only need to implement the missing functionality
required by the change, and plug it into an architecture that is already prepared for it. The
precise amount of effort saved will vary depending on the architecture, the specific
pattern, and the nature of the change.

Overall effort

When evaluating the effort involved in this methodology, the main question is whether the
time savings achieved while implementing changes compensate for the added costs of
learning and modelling.

As seen on the previous sections, the learning effort isn’t too high, and can be minimized if
we expect developers to use the Change Patterns methodology over several projects.
Likewise, the additional costs associated with the SI* models are fairly low. Thus, the two
main effort components that should be taken into consideration are preparation effort,
and change implementation effort savings. The application of this methodology will be
advantageous from an effort standpoint whenever:

 the savings in change implementation for a given pattern exceed the costs of change

preparation (i.e. patterns actually save effort and do not just move it to an earlier

stage),

 the rate of pattern application (i.e. the frequency of system changes, multiplied by the

likelihood of a change matching an existing pattern) is high enough for these savings

to exceed the fixed costs of the methodology (learning and modelling).

It is hard to provide concrete values for the first point, the effort balance for each pattern.
However, we do know that implementing a change that has been prepared in advance
never costs more than doing so without preparation, and that introducing drastic changes
in an unprepared architecture can be costly, as well as prone to errors. So we can estimate
that patterns typically result in significant effort savings.

The second point, pattern application rate, is easier to characterize. Projects where
frequent changes are expected are best for this methodology, and a careful effort in
selecting the set of prepared patterns will greatly improve performance.

Specific Industrial criteria

The specific industrial criteria that was defined for the Change Patterns artefact was the
value that the methodology can provide to the industrial stakeholder. We identified two
properties of the methodology that were of value for TID, in the context of the HOMES
scenario: the ability to prepare for changes in advance in order to minimize errors and
improve system stability and the reduction of effort in systems with frequent changes. In
addition, a secondary value-adding property was found: the fact that the methodology can
help in making design decisions.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 73 / 187

Anticipates changes

The ability to anticipate changes and prepare for them in advance with minimal effort is
one of the main selling points of Change Patterns. Unexpected architectural changes when
a project is late in development or already in production can be costly and error prone. By
contrast, making these same changes after preparing for them early in design (such as
when applying a pattern) is much safer and easier, and better preserves architecture
stability. Each time the methodology succeeds in anticipating a change, it provides great
value to the stakeholder. The probability to anticipate a change for a given project
depends on the number and relevance of patterns that are applied during design, and on
the rate of changes for that project. In general, applying more patterns in the preparation
phase increases the amount of changes that will benefit from the methodology, as long as
their change scenarios are relevant to the architecture. However, this tends to yield
diminishing returns, since once the main change scenarios have been covered, applying
new patterns will only address scenarios that are either less likely or have less impact on
the architecture. The overall rate of changes in an architecture is also significant towards
change anticipation, since the more changes there are, the more likely that any given
pattern will come up. In the case of the HOMES scenario, we expect that the home gateway
architecture will be subject to a relatively high rate of changes, and that trust evolution
will be present in many of these changes, making the chances of successfully applying the
patterns in the current catalogue quite high. That said, we believe there is still room for
growth. There is potential for pattern categories other than trust evolution that could be
useful in HOMES. For this reason, we consider that extending the existing pattern
catalogue shows promise as a future line of work.

Saves effort

As we have seen in the discussion of the Human Effort criteria, the use of change patterns
under the right conditions results in an overall reduction of development effort once
changes are applied. This is a very valuable property for the stakeholder.

Guides design decisions

One secondary aspect of Change Patterns that can nevertheless prove valuable to
developers is its ability to guide design decisions. This is manifested in two ways: by
helping identify common problems, and by providing generic solutions. When a developer
looks at a catalogue of patterns and attempts to apply it to the architecture of a system,
he’s likely to identify potential problems or future system evolutions that he was
previously unaware of. This is not to say that the change scenarios in a pattern catalogue
cannot be identified by other means, such as analysing an architecture, but the catalogue
approach is usually the best way to ensure that a given set of changes is properly covered
by the architecture. Related to the previous point is the ability of a pattern catalogue to
suggest generic solutions to address a change scenario. Though one should not expect the
list of solutions provided by a pattern to be exhaustive, or to include the optimal solution
for a certain context, this list does provide insight on what approaches are commonly
useful in a type of scenarios. Even when they don’t include the best approach for a given
situation, the suggested solutions can be seen as a useful reference – either a starting point
to be later optimized on, or a sub-optimal but workable solution that is still good enough
for the less likely or important change scenarios. At any rate, having access to these pre-
defined solutions is a useful tool that can reduce development time.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 74 / 187

When applying Change Patterns on HOMES, we found the pattern catalogue to be helpful
in this regard, by providing one or more suggested solutions that were viable for the
change scenarios that came up. By following the patterns, the designers identified some
future problems and their corresponding solutions with relatively low effort.

VALIDATION RESULTS

An overview of the validation results is shown in the following table (Table 5). The results
can be summarized as follows. The applicability criteria for the HOMES scenario are
fulfilled, since the methodology can be fully applied by a researcher on this case study.
Moreover, though this was not considered for the original specification of evaluation
criteria, we believe that the stakeholder would be able to apply the methodology for
HOMES in an industrial context with little or no assistance.

Table 5 Change Patterns validation results

Criteria Evaluation

Applicability Can be applied by researcher on

case study

Change scenarios apply to HOMES Yes

Suggested solutions can be applied in

HOMES

Yes

The methodology can be applied in HOMES Yes

Human Effort Can save effort under certain

conditions

Learning effort 10-12 hour

Modelling effort 2 hours initially, plus ~10 minutes per

change

Preparation effort Low, increases with # of patterns

Change Implementation effort Lower than manual approach

Overall Effort Depends on effort saved per change,

and rate of changes

Value to stakeholder Valuable if frequent changes and

catalogue is appropriate.

Anticipates changes Very valuable. Depends on # of

patterns, and rate of changes.

Saves effort Very valuable. Depends on effort per

change, and rate of changes

Guides design decisions Less valuable. Helps developers.

Regarding the criteria of human effort, we have determined that the methodology can save
effort over the course of a project, provided that the architecture is subject to frequent
changes, and that these changes would be costly under the manual approach. Effort
overheads such as learning and modelling are relatively low, and are concentrated at the
beginning of a project.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 75 / 187

For the specific case of the HOMES scenario, the projected rate of changes in the HOME
gateway architecture makes it suitable for the methodology, thus allowing for such effort
savings. As for the specific industrial criteria, which has been defined as the value
provided to the stakeholder, our evaluation is positive. Two major sources of value have
been identified in the ability to anticipate changes and prepare for them in advance, which
prevents errors and increases architecture stability, and the effort savings mentioned
above. Both properties would be of application in the HOMES scenario, making the
methodology valuable for TID in this case. In addition, we have identified a secondary
valuable property of the methodology in its ability to guide design decisions, easing the
work of developers. Overall, we consider that the Change Patterns artefact is a good match
for the needs of a home gateway architecture, and that adapting it to other industrial
scenarios should be feasible.

Industrial considerations

A major consideration for the use of Change Patterns is its place in the development
lifecycle. By its nature, the methodology should be applied as early as possible during a
project, since a significant phase takes place during design. This makes it ideal for
adoption in new developments, but might challenge its application on existing
architectures – though this has not been assessed so far. That said, there may be a case for
using Change Patterns in an ongoing project that is expected to suffer frequent changes
over a long period of time. Although this is clearly not as ideal an scenario as its use on
new projects, and despite the fact that in this case even changes prepared and
implemented with the help of Change Patterns are likely to be costly and risky, it could
nevertheless be worthwhile to use the methodology. The benefit of planning in advance
for architectural changes without the pressure of close deadlines cannot be
underestimated. Though we haven’t had the chance to explore this use of the
methodology, we believe it shows promise, since it could greatly expand its scope of
application.

3.3 WP6 Verification

3.3.1 WP6 ARTEFACTS

The validation activities for WP6 focused on two artefacts:

 VeriFast, a tool to validate some core security modules (programs written in C
language).

 Security-by-Contract (SxC), a methodology to verify the software contract of OSGi
bundles.

3.3.1.1 VeriFast

This section reports on the validation of the VeriFast software verification tool as provided
by WP6. The VeriFast tool allows the verification of C and Java software, taking as input
the source code along with annotations consisting in method contracts written in
separation logic, inductive data type and fix-point definitions, lemma functions and proof
steps. Theoretical background and technical details on VeriFast are presented in D6.2.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 76 / 187

VALIDATION SCENARIOS and EXERCISES

As discussed in D1.2, the experimental focus of WP6 off device verification on HOMES is on
the “secure extensibility” security property, in the context of the “core security module
update” change requirement. The goal is to verify one of the HOMES software modules,
ensuring that no illegal operations (such as dividing by zero or illegal memory access) are
performed in the code, and (since the module is multi-threaded) that there are no data
races.

The validation exercise for this artefact consisted in the application of the VeriFast tool to
verify the C code of a HOMES module, the PEP (Policy Enforcement Point). From the PEP
source code provided by TID, an engineer generated the annotations required for the
verification process. In parallel, the VeriFast team worked on extending C language
support in the tool in order to make it fully compatible with the PEP code. Finally, HOMES
domain experts examined and evaluated the process and the achieved results.

PEP implements a Policy Enforcement Point for home gateways. The program, consisting
of approximately 1700 lines of C code, facilitates the application of security policies in
Network Admission Control scenarios. That is, for an authenticated network device, PEP
will receive an access policy from a Policy Decision Point. This policy is then put in place
by configuring the gateway’s network interfaces accordingly. An extended description of
the case study is given in D1.1. This case study is eminently interesting and challenging
due to PEP’s close interaction with Linux networking components. It is the first case study
in which VeriFast is employed on low-level network management software.

Note on validation time line

The PEP source code is released to WP6 in November 2010. Subsequently, an initial
assessment of the feasibility of fully verifying the program is carried out in December
2010. It is concluded that conducting the verification will require VeriFast’s support for
the C language to be extended, imposing substantial implementation effort on the VeriFast
team. Work on extending VeriFast with the objective to verify PEP starts in March 2011. In
September and October 2011 an extended case study on verifying PEP is conducted. In the
course of this case study WP6 produces a modified version of PEP so as to only use C
language features that are supported by VeriFast. In addition, initial annotations, i.e.,
method contracts for the PEP implementation, are produced. WP6 concludes that fully
verifying PEP is feasible. Yet, it is not clear whether this work can be finished before the
submission of the final project deliverables. In consequence, this report is based on a
validation of ongoing work on the case study.

VALIDATION CRITERIA

The validation criteria considered in this report are given in D1.2. In summary, we
investigate whether the VeriFast tool can be applied by the owner of the case study and
whether, and to what extent, interaction with researchers and the developers of VeriFast
is required. Of particular interest for TID is the usability of VeriFast for developers and
testers with few or no experience in the field of formal methods.

We also determine the required human effort, judging whether the application of VeriFast
imposes additional costs or saves effort as compared to manual verification or pure
testing.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 77 / 187

Focusing on further technical aspects of VeriFast, we evaluate the flexibility of the tool,
judging its applicability to further security modules without major change. We also
validate the tools effectiveness, i.e., that a number of true property violations is reported
while the rate of false-positive error reports is comparably low. Considering performance
aspects, we require VeriFast to show similar run-times as a compiler to enable efficient
integration into existing development processes.

The iterative decomposition of these evaluation criteria into measurable indicators is
shown below.

Effective Usage

 Applicability:

o Verification process can be performed on HOMES.

o Verification results can be understood.

 Human Effort

o Learning effort.

o Verification effort.

o Comparison to manual approach.

Specific Industrial Criteria

 Flexibility:

o Tool can be applied to different software modules.

 Effectiveness:

o False negative rate.

o False positive rate.

 Usability:

o Non-experts can check error reports on the tool.

 Performance:

o Verification time.

Verification process can be performed on HOMES

At present, the independent use of VeriFast by the stakeholder is constrained by the still
incomplete support of the C programming language in the verification tool. In particular,
VeriFast lacks support for compound data structures (structs) that are not dynamically
allocated. Furthermore, initialisers for compounds and arrays are also not supported.
While it is certainly possible to change the PEP implementation (or any other security
module) to avoid these programming constructs, this is highly inconvenient. WP6
confirms that most issues with respect to language support can theoretically handled by
the verification algorithm in VeriFast. Hence, enabling the stakeholder to perform
verification in complete independence of the tool developers is mainly an issue of
additional tool development effort.

Given that, the verification can be currently done partially by the stakeholder. Eventually,
as C language support in the tool improves, the stakeholder should be able to perform the
verification with little or no assistance.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 78 / 187

Verification results can be understood

VeriFast provides an interactive verification experience as verification times are short and
errors can be diagnosed using a symbolic debugger. Thus, the results of applying VeriFast,
i.e. bug reports, can be easily inspected and understood by the stakeholder, and
specifically by developers with no direct knowledge of the tool algorithm.

One limitation when displaying verification results in the current version of the tool is that
only the first error in the code is shown – in order to observe further errors, a developer
has to first address or comment the code causing the current one. Having the verification
tool show a full list of errors in a section of code would make the process of understanding
and fixing problems with the code significantly faster and easier.

Learning effort

As part of the verification process, it is required to annotate the code to be verified.
Writing these annotations is difficult and would require a developer or tester to be trained
in the use of formal methods. Our evaluation and validation efforts show that an
experienced developer may need a month to learn using VeriFast effectively.

Since learning the use of annotations involves such a considerable commitment, we
believe that the only cost-effective solution is to delegate these verification tasks on
specialized personnel. Thus, a number of verification engineers, (similar to testing
engineers) would be in charge of annotating code to be verified across multiple projects.

Verification effort

As a drawback, the tool suffers in terms of usability from the amount and complexity of
annotations that are to be put in place in order to perform verification. As reported by
WP6, applying VeriFast imposes an average overhead of 0.5 lines of annotations per line of
code. Moreover, writing these annotations is difficult and would require a developer or
tester to be trained in the use of formal methods, as explained in the previous section.

Given the high cost involved in the verification of a section of code, this is not an operation
that should be taken lightly. In fact, only highly sensitive software should ever be subject
to verification of its full code. For most systems (including HOMES), developers should
take advantage of the fact that VeriFast can check specific sections of code, by annotating
and using the tool to verify only the most critical parts that can really benefit from the
level of assurance provided by this process. Non-critical code can still be checked by other,
less expensive means.

Comparison to manual approach

The use of formal software verification tools like VeriFast is intended to provide very
strong guarantees for the correctness of an implementation artefact. That is, the software
will behave correctly with respect to its specification (given in terms of source-code
annotations in the case of VeriFast) for all possible input vectors. Other techniques,
including testing and code inspection, are complementary to formal verification but do not
provide the same level of assurance. Thus, they cannot be compared in terms of effort –
VeriFast achieves results that the manual approach can’t match.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 79 / 187

What needs to be determined, then, is whether a system requires the high level of
assurance provided by VeriFast. In the case of safety-critical systems, this is typically the
case.

In a case like HOMES and the PEP module, a selective application of VeriFast may reveal
critical errors that would otherwise emerge after deployment – so it can be expected to
reduce the effective maintenance costs of a software project.

Tool can be applied to different software modules

VeriFast may readily be employed for the verification of other security modules, provided
their code falls within the supported subset of the C programming language. Note that
ongoing work to expand C language support for the tool contributes to mitigating this
limitation. Eventually, it should be possible to use the tool on most C language software. In
addition, verification of Java code is also supported by the tool, though this falls outside of
the scope of the HOMES validation exercises.

Finally, there are two points that puts into perspective how limiting the restriction to a
subset of C really is. On the one hand, outside of extremely sensitive systems (which the
HOMES gateway architecture isn’t), it is not necessary for VeriFast to cover 100% of the
system code – rather, it is expected that only select portions of the code (such as those
dealing with threading or memory allocation) should typically be verified. Apart from that,
it is possible to sidestep the lack of compatibility for certain language features by
rewriting the code of the verified system so that it provides equivalent functionality
without accessing these features. This could be a very expensive solution if the whole
system code had to be modified this way, but the fact that it is possible to perform
verification on just a part of the code (as explained above) makes this manageable. In fact,
this approach has been successfully applied to the HOMES PEP code during earlier stages
of the validation exercises, while C language compatibility was still relatively reduced.

False negative rate

One of the crucial properties of the VeriFast tool is its low rate of false negatives – it
provides a very good level of assurance that a verified module is free of the types of errors
covered by the algorithm (including threading errors and memory problems).

It should be noted that there are a few factors that can increase the false negative rate. The
best performance is achieved when 100% of the code is verified, and the corresponding
annotations have been perfectly defined. However this will not always happen in practice.
As has been discussed, the cost of annotation will lead to verification only covering critical
portions of code for many systems. In this case, VeriFast offers no guarantees whatsoever
that the unverified code is error-free though, if the verified code has been selected
carefully, any unverified errors will have relatively low impact.

Quality of annotations can also affect the amount of false negatives, in that in that a section
of code with insufficient or poorly defined annotations will not be properly verified,
leading to a lower level of assurance in practice. Thus, verification performed by less
experienced developers is less reliable. Because of this, special attention should be
devoted to the learning process of the VeriFast tool. Also, the development of tools that
assist in the generation of annotations becomes a highly interesting topic – and in fact
there is ongoing research in Leuven following that direction.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 80 / 187

False positive rate

Another important parameter to describe the quality of the verification is the rate of false
positives. Though not directly affecting the level of assurance provided by the tool, the
amount of false positives is significant in that an excess of such positives can artificially
increase the effort required to fix errors after verification, by forcing developers to waste
time on incorrectly diagnosed bugs. In our experience, VeriFast has a low rate of false
positives. It is worth clarifying that the verification process performed by VeriFast does
not necessarily point to sections of code that are actively causing problems in the
software, but to dangerous code that has the potential to do so. This kind of bugs is not
considered a false positive even when a particular bug might not be negatively affecting
the behaviour of a program at a given time – they tend to have unpredictable interactions,
and are likely to cause problems over time. Thus, identifying and fixing them is always
desirable.

The fact that the validation exercise for HOMES is still in progress makes it difficult to
provide specific examples for this evaluation criteria. Still, having applied VeriFast only to
a subset of PEP so far, WP6 already reported a strong indication for a race condition in the
code. Final conclusions on the effectiveness of VeriFast on this case study can only be
drawn once the exercise is complete. As with false negatives, the rate of false positives can
be affected by low quality annotation – the considerations regarding learning and tool
usage, mentioned in the previous section, also apply here.

Non-experts can check error reports on the tool

Unlike the annotation generation step, result inspection in VeriFast does not require any
particular knowledge of the algorithm. In VeriFast, errors can be diagnosed using a
symbolic debugger. Thus, the bug reports provided by the tool can be easily inspected and
understood by the stakeholder. In practice, this will mean that in a typical project, only a
small number of developers will need to be aware of the nuances of VeriFast, in order to
properly annotate the code – once that is done, anyone can access and use the information
provided by the verifier.

Verification time

Considering performance aspects, we require VeriFast to show similar run-times as a
compiler to enable efficient integration into existing development processes. VeriFast
performs efficiently on the example. In fact, verification time is consistently short and on
par with compile time. This is an important point towards integrating VeriFast in existing
validation processes: the tool may be used interactively by the developers.

VALIDATION RESULTS

An overview of the validation results is shown in the following table (Table 6). The results
can be summarized as follows. The applicability criteria for the HOMES scenario are
mostly fulfilled, since currently the stakeholder can use the tool on the case study with
moderate assistance (to extend C language support on the tool). Once better C language
compatibility has been achieved for VeriFast, the stakeholder should require little to no
assistance to use the tool.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 81 / 187

Table 6 VeriFast validation results

Criteria Evaluation

Applicability Can be applied with some

assistance

Verification process can be performed on

HOMES

Yes, now with assistance, later

independently

Verification results can be understood Yes

Human Effort Doable, but significant

Learning effort 1 month

Verification effort 0.5 annotation lines / code line

Comparison to manual approach Not comparable

Flexibility Yes, moderate changes may be

required

Tool can be applied to different software

modules

Yes, conditioned to language

support

Effectiveness Tool is effective

False negative rate Very low, depends on annotations,

% of verified code

False positive rate Low, depends on annotations

Usability Easy inspection for non-experts

Non-experts can check error reports on the

tool

Yes

Performance Allows interaction

Verification time ~compile time

Regarding human effort, experience shows that VeriFast requires significant investments
both for learning and for the verification process. However, these can be mitigated with
techniques such as the use of specialized verification engineers and selective verification
of code. At any rate, an effort comparison with manual verification approaches cannot
really be made, since these approaches fail to provide the level of assurance achieved by
VeriFast. As for specific industrial criteria, we have confirmed that the tool is flexible and
can be translated to other software systems without a major effort, though the level of C
language support is a limiting factor for now. Also, experience shows that VeriFast is an
effective tool, with a very low rate of false negatives and a reasonable level of false
positives. In addition, the usability criterion is also met, when it comes to result collection
– any developer with no knowledge of the algorithm can inspect bug reports in an intuitive
way. Finally, the performance of the tool is good, with comparable delays to those shown
by a compiler, allowing for interactive use and integration with IDEs. Overall, VeriFast is a
formal verification tool with a strong potential for applicability in industrial practice. The
tool’s strengths are effectiveness for finding bugs that would hardly be identified with
testing techniques, as well as the tool’s flexibility and performance. It also has
shortcomings with respect to language support and usability, which are currently being
worked on.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 82 / 187

Industrial considerations

For future work we recommend that VeriFast’s support for C should be extended to enable
further case studies in the domain of low-level system management components.
Furthermore, research should focus on simplify annotations and reducing annotation
overhead, as well as on providing automated tools to assist in annotation generation. The
VeriFast tool would also benefit from debugger-like integration in commonly used
integrated development environments such as Eclipse.

Since using the tool involves a significant effort investment, the decision of when and how
to use it in a project should be taken with care. For highly sensitive systems, the high level
of assurance given by VeriFast is more than likely to justify the costs by itself, but in other
scenarios, including the HOMES gateway, that much assurance is not really required for
the whole system. In those cases, applying the verification process on select modules and
code sections will yield a reasonable level of assurance with considerably less effort.

Other considerations need to be taken when using VeriFast. The learning effort required
to apply the annotations for the tool encourages using specialized developers that focus on
the task of annotating code, possibly across different projects.

3.3.1.2 Security-by-Contract (SxC)

This section reports on the Security-by-Contract (SxC) methodology for the HOMES
scenario as provided by WP6. In an OSGi platform such as the one used in HOMES, the SxC
methodology enables each bundle coming onto the platform with a contract embedded
into its manifest file. This contract contains details about the bundle’s functional
requirements, also listing permissions to access its services and packages. The
PolicyChecker entity embedded on the platform checks during installation and monitors at
run-time that the requirements of the bundle are satisfied. Thus the SxC methodology
enables dynamic functionality and security enforcement in a changing environment when
bundles from different providers are installed or removed while various provided services
can be launched or stopped.

VALIDATION SCENARIOS and EXERCISES

Since the HOMES case study is considered a secondary case study for SxC (the primary one
being ATM), and due to resource limitations, it has not been possible to implement a
proof-of-concept prototype of the proposed SxC solution for HOMES. Instead, the HOMES
SxC work was focused on providing a detailed description of how the SxC approach could
be applied to this scenario. As a consequence, validation for this artefact was not based on
experimental exercises, but on analysis and discussion of the presented methodology.

As discussed in D1.2, the SxC artefact on homes is focused on the security property of
“secure extensibility”, in combination with the “bundle lifecycle operation” change
requirement. The goal is to improve the control of interactions between Java OSGi bundles
with respect to permitted/forbidden information flow paths, particularly between bundles
provided by different stakeholders.

For the validation exercise of the SxC artefact, the domain experts at TID were provided
with a technical report describing in detail the Security-by-Contract methodology for OSGi
platforms (such as the HOMES gateway). This description included the definition of bundle

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 83 / 187

interactions and specification of a bundle contract, the definition of the OSGi platform
security, the sketch of the architecture of the SxC extension of the OSGi platform and the
checks to enforce security on the OSGi platform. The domain experts analysed this report
in depth, and conducted a series of discussions with the SxC researchers. With the
feedback and suggestions captured in this way, a new version of the report was generated.
This version (2.0) has been included as part of deliverable D6.6. Finally, the methodology
was evaluated following the criteria defined in deliverable D1.2.

VALIDATION CRITERIA

Two top-level criteria have been defined for the Security-by-Contract artefact in HOMES:
effective usage (which includes applicability and human effort), and specific industrial
criteria (including performance, effectiveness, and level of automation). The iterative
decomposition of these criteria into measurable indicators is shown below.

Effective usage

 Applicability:
o The methodology can be implemented by the researcher.
o Bundle contracts can be used on HOMES by the stakeholder.
o The methodology addresses relevant threats on HOMES.

 Human effort:
o Framework deployment effort.
o Learning effort.
o Contract generation effort.

Specific Industrial Criteria

 Performance:
o Delay on bundle lifecycle operations.
o CPU and memory consumption.

 Effectiveness:
o False negative rate.

 Automation:
o Contract enforcement automation.
o Contract generation automation.

A detailed discussion of the evaluation for each sub-criterion is provided below.

Applicability

The methodology can be implemented by the researcher

The HOMES SxC report provides an architectural and functional definition for a software
module (the SxC framework) implementing the Security-by-Contract methodology on an
OSGi platform. Though it has not been implemented due to resource limitations, TID
domain experts have concluded that the OSGi framework presents no obstacles for the
implementation of such a system. A likely implementation of the SxC framework would be
as an OSGi bundle with permissions to access certain OSGI resources such as the service
registry, the framework policy file, and the manifest files and permission files of bundles
being loaded on the platform.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 84 / 187

The methodology can be used on HOMES by the stakeholder

Once the SxC framework (as described in the previous section) has been implemented, it
should be easy for the stakeholder to deploy it on the HOMES gateway and apply the
Security-by-Contract methodology there. This will typically involve two differentiated
tasks: SxC deployment and configuration, and contract generation.

Deployment and configuration of the SxC framework on a HOMES gateway would be
performed by the network operator, and would involve the installation of a SxC bundle
with the appropriate permissions. As any system update on OSGi, this could be done
dynamically on a running platform without interfering with its operation. It has to be
noted that even after deploying the SxC framework, usage of security contracts on bundles
is strictly optional, so it wouldn’t be necessary to have immediate upgrades of existing
gateway services to comply with the methodology. A likely adoption scenario would have
a progressive introduction of bundle contracts, starting with new services, and adding
them to new versions of existing services as they were updated. Likewise, the inclusion of
contracts in a bundle is backwards compatible, allowing the use of contract-enabled
services on systems without SxC – though this would likely require additional security
measures to compensate for the lack of SxC.

On the other hand, contract generation would be the responsibility of service providers,
who would have to define contract permissions according to the needs of each specific
bundle. As explained above, providers wouldn’t be required to make drastic changes in
their services at once, since it would be possible to gradually add contracts to new services
and updated versions of existing services.

The methodology addresses relevant threats on HOMES

An important parameter to determine the applicability of this methodology on the HOMES
scenario is its ability to address actual threats for a home gateway. The HOMES SxC report
has identified several cases where Security-by-Contract allows service providers to define
restrictions on bundle usage that are not possible using just the OSGi security framework.
As an example, SxC can prevent the install of a bundle under a series of specific services
are installed and running on the platform, in order to avoid denial of service attacks.

Learning effort

It is expected that the basics of SxC methodology will require a relatively low effort to
learn – a developer should understand enough to create a simple contract after a few
hours of study. However, learning to take advantage of the new security functionalities
enabled by SxC may prove more complicated, and take a deeper study and some direct
experience before developers get it right. This is difficult to estimate until we have had the
chance to implement the methodology and see it at work.

Framework deployment effort

We estimate that the deployment of SxC once it is deployed will require very little effort
for the operator of a network of home gateways. Installing a bundle (such as the SxC
framework) on an OSGi platform like the HOMES gateway is typically a routine task that
presents few challenges. SxC deployment should be transparent to and require no effort
from the users of a gateway, except from perhaps providing confirmation for a system

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 85 / 187

update. Note that in order for the SxC methodology to work, it’s not enough to have the
SxC framework deployed – security contracts also need to be added for each individual
service, as discussed in the following section.

Contract generation effort

The generation of an SxC contract for an OSGi service should require a small amount of
work from the provider of that service – likely in the order of a few developer work days
per service. The developers would need to evaluate carefully the set of local permissions
required by a bundle, as well as to decide the set of authorizations they are willing to
provide for access to their packages and services. Though further bundle updates may
require modifying the bundle contract, it is expected that this will be a relatively rare
occurrence – so the maintenance work associated with SxC contracts can be considered
negligible. One significant upside of the SxC methodology is the fact that it’s optional and
backwards compatible, which means that service providers do not need to immediately
incorporate contracts into each running service as soon as SxC is adopted, but can
introduce them gradually as new bundle versions are released. This allows for careful
planning of SxC contracts, and to better distribute the workload.

Performance

Delay on bundle lifecycle operations

One of the potential drawbacks of a module like the SxC framework lies in the risk of
noticeably slowing lifecycle operations down, thus degrading user experience. Due to the
lack of an implementation, we have no hard data on this issue, but analysis strongly
suggests that this will not be the case for SxC. On the contrary, the delay introduced by this
approach should remain at very low levels, so that the use of SxC would be transparent to
users.

The process of an SxC security check performed during lifecycle operations can be
summarized as follows: the SxC framework parses SxC headers in the bundle manifest,
checks for security stability, and checks for functionality stability. The operations
performed are relatively cheap ones, such as parsing a short text file or comparing sets of
permissions with bundle interactions, or sets of functional requirements with available
services in the platform. It is safe to assume that such a security check will not have a large
impact on lifecycle operation delay. It should be noted that, since the contract is included
as part of the bundle manifest, it does not need to be signed separately, thus saving the
need for a relatively costly decryption operation. Some future extensions for SxC currently
under consideration include the Conflict Resolution component, which would handle
conflicts between bundles in more complex scenarios based on a combination of
framework-specific policy and system policy. Such extensions are likely to involve more
complex logic and be more resource-intensive, so special care will need to be taken to
preserve a good performance.

CPU and memory consumption

Though no specific measurements can be made until an implementation of the SxC
framework is available for OSGi, we know that, as explained in the previous section, the
basic working of SxC is based on simple operations which consume little CPU and memory.
Moreover, this processing only takes place when a bundle lifecycle operation is performed

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 86 / 187

– since these operations are typically infrequent, the SxC bundle should remain inactive
most of the time. This suggests that deploying SxC would be feasible even on devices with
limited resources, like some home gateways.

Effectiveness

False negative rate

Since the checks performed by the SxC framework are fairly straightforward, we expect
the methodology to correctly identify and apply the security policies and functional
requirements associated with all bundles, barring errors in the contract or deliberate
attacks. As a consequence, the false negative rate will be mostly dependent on human
errors and attacks. The likelihood of poorly defined contracts leading to errors in SxC
performance appears to be low, since the contract headers are not particularly hard to
define. That said, special care will be needed so that developers gain a good grasp of the
methodology during the learning period. Also, developers should be aware of the
importance of contract definition and revise the headers accordingly. As for specific
attacks exploiting vulnerabilities of the SxC framework, we haven’t been able to study the
issue, but this point should be taken into account once the module is implemented.

Automation

Contract enforcement automation

The SxC is expected to work on a fully automated manner, inspecting bundle contracts and
enforcing contract policies without need for user interaction.

Contract generation automation

The generation of SxC contracts for OSGi bundles, unlike contract enforcement, cannot be
automated in the current framework. Contracts consist of two parts: access control policy
for access to the resources of a bundle, and functional dependencies of the bundle. These
parts are to be defined by the bundle owner and developer, but they cannot be directly
inferred from the bundle code. As a future development, it would be interesting to find
ways to automate contract generation, or at least to have automated tools that guide
developers in the process.

VALIDATION RESULTS

An overview of the validation results is shown in Table 7. The results can be summarized
as follows. The SxC methodology can be applied by the stakeholder in complete
independence, requiring a low level of effort – effort comparisons to a “manual approach”
have not been provided since no manual equivalent to the SxC checks has been identified.
As for industrial criteria, the methodology should offer a good performance without
requiring much in the way of hardware resources. We also expect it to accurately identify
when the security policies and functional requirements of a bundle are met, outside of
human errors (poorly defined contracts) or potential deliberate attacks (the impact of
which should be evaluated in a future study). Finally, the working of the SxC is fully
automated and requires no user intervention, though the same cannot be said of the
generation of contracts by service providers, which remains a purely manual process.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 87 / 187

Table 7 Security-by-Contract (SxC) validation results

Criteria Evaluation

Applicability Can be applied fully by

stakeholder

The methodology can be implemented by the

researcher

Yes

Bundle contracts can be used on HOMES by

the stakeholder

Yes, no assistance

The methodology addresses relevant threats

on HOMES

Yes

Human effort Doable, low effort required

Learning effort Hours to understand, more to

master

Framework deployment effort Very low effort for operator

Contract generation effort Low effort for provider

Performance Good, even on limited devices

Delay on bundle lifecycle operations Not noticeable

CPU and memory consumption Low

Effectiveness Estimated as good enough

False negative rate

Low, caused by human errors or

attacks

Automation Automated operation, not

development

Contract enforcement automation Fully automated

Contract generation automation Not automated

Industrial considerations

The first point of this evaluation to be taken into account from an industrial perspective is
the fact that no experimental results have been available due to the lack of a framework
implementation. Nevertheless, we believe that the validation results acquired through
theoretical analysis are fairly reliable, though we acknowledge the possibility of some
unexpected interactions coming up once we have the chance to implement the SxC module
over an OSGi platform and see it in practice. Thus, the results of this report could be
expanded after this kind of practical experience, but we do not expect to find significant
contradictions between the current results and those provided by experimental practice.

Overall, the current SxC specification for OSGi platforms looks like a promising starting
point, which has some immediate applications as well as some very interesting research
lines (such as Conflict Resolution) which will need to be studied in depth.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 88 / 187

3.4 WP7 Testing

3.4.1 WP7 ARTEFACTS

The validation activities for WP7 focused on one artefact, a methodology for managing test
evolution.

3.4.1.1 Telling Test Stories (TTS)

The WP7 artefact validated in the HOMES scenario consisted in a methodology for
managing test evolution. It can be decomposed into a language (a meta-model for
expressing tests and connecting model elements) and a process (a test evolution
management process for keeping tests and system synchronized.

VALIDATION SCENARIOS and EXERCISES

For the Telling Test Stories artefact in the HOMES scenario, the validation covered the
change requirement of Core Security Module update, in combination with the security
property of policy enforcement. In addition, the Bundle Lifecycle Operations change
requirement was also covered, with the security properties “policy enforcement” and
“security expandability”. The goal was to have the test model and, upon some eventual
change on the system or requirements, identify the affected tests and derive tests suites.
In this case the targets were policy-related and enforcement-related tests. The validation
scenario for this artefact consisted in a walkthrough where the test evolution
methodology was applied to the HOMES scenario. UIB provided a walkthrough script
which was given to TID domain experts. The experts followed the script with assistance
from UIB, and then evaluated the artefact according to the evaluation criteria defined in
deliverable D1.2. The walkthrough started with a brief presentation to refresh the
language and methodology, which the experts had studied previously. Later, a change
scenario was defined, consisting on the introduction of a non-repudiation protocol for the
HOMES scenario, which would be applied to third party service providers with low levels
of trust. The initial model definition (including system, requirements and tests) was
examined. Then, a change was introduced in this model, consisting on a new security
requirement – the need to use non-repudiation for untrusted providers. In order to cope
with this requirement, a new test was created, as well as new components and services in
the system. The impact of the changes in system and requirements was evaluated for all
tests. Finally, a test suite to validate this change was generated using OCL.

VALIDATION CRITERIA

Two top-level validation criteria have been defined for the Telling Test Stories artefact:
Effective usage (which includes applicability and human effort), and specific industrial
criteria (of which completeness and usability have been considered). The iterative
decomposition of these criteria into measurable indicators is shown below.

Applicability

 Language:
o Representation of HOMES scenario:

 HOMES System can be represented.
 HOMES Requirements can be represented.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 89 / 187

 HOMES Tests can be represented.
o Can be understood:

 Meta model can be understood.
 Model representations can be understood.
 State machines can be understood.

o Can be used:
 Models can be generated by the stakeholder.
 Models can be updated by the stakeholder.

 Methodology:
o Change propagation:

 All relevant model changes are propagated to tests.
o Test Selection:

 Test selection criteria can define a variety of test suites.
 Test selection is performed efficiently.

o Can be understood:
 Change propagation can be understood.
 Test selection can be understood.

o Can be used:
 The change propagation process can be used by the stakeholder.
 The test selection mechanisms can be used by the stakeholder.

Human Effort

 Learning:
o Language and methodology Learning effort.

 Model:
o Model generation:

 System model generation effort.
 Requirements model generation effort.
 Test model generation effort.

o Model updates:
 Model update effort.

 Methodology:
o Methodology usage:

 Effort saved through change propagation.
 Effort saved through test selection.
 Overall effort savings.

Completeness

 All relevant entities in HOMES can be included in the model.
 All security properties can be included in test model.
 All change requirements can be applied to the test model.

Usability

 Test evolution usability:
o All models can be handled by an integrated tool.
o Model element states are easy to observe and edit.
o Test types are easy to observe and edit.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 90 / 187

o Associations between requirements, tests, and services are easy to observe
and edit.

o Changes in test states are notified clearly.
 Test selection usability:

o Test selection queries are easy to run.

A detailed explanation of each sub-criterion and the results obtained are provided in the
following sections.

Effective Usage

The criteria of effective usage determine whether the language and methodology defined
for this artefact can be successfully applied to the HOMES scenario, and the level of effort
required for it. This effort is then compared to that of a manual approach to test evolution,
to estimate the time savings obtained.

Applicability

Applicability has been separately evaluated for the two artefact components: the language
(a meta-model for expressing tests and connecting model elements) and the methodology
(a process to manage synchronization of tests and system during test evolution). Three
aspects of the language were taken into consideration. The first one was its ability of the
model to represent all relevant elements in the HOMES scenario, including the system, its
requirements, and the tests. In second place, the degree to which this language can be
understood by interested parties; we analysed this for the meta-model itself, as well as the
model representations used, and the state machines associated to model elements. Finally,
we examined the use of this language for generating models and updating them.

Regarding the methodology, we evaluated four categories of characteristics. The first two
dealt with its main functionalities, which are managing the propagation of changes in the
system and the selection of tests suites matching a set of changes. Within these
functionalities, we examined the coverage of changes that could be propagated, as well as
the variety of filter conditions that could be applied to test selection, and the efficiency of
the selection process. The other two categories were the comprehensibility and usage of
this methodology. Both of categories were analysed separately for change propagation and
test selection.

HOMES System can be represented

As part of the validation walkthrough, a system model was created according to the TTS
meta-model, providing an accurate representation of the system in the HOMES scenario.
Since the system model defined by the TTS meta-model is actually a conventional UML
component diagram, any service-oriented system should be easy to represent this way.

HOMES Requirements can be represented

During the walkthrough, a subset of the requirements from HOMES, including both
functional requirements and functional requirements, were modelled according to the TTS
meta-model. This provided an accurate representation of these requirements. Though the
full requirement set was not used due to time constraints, we concluded that all of the
requirements from the scenario could be represented this way with similar accuracy.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 91 / 187

The representation of choice for this requirements model is a requirement hierarchy,
where every requirement is composed of a name, an identifier and a brief textual
description, and security requirements are associated to functional requirements as
constraints to them. This is a representation that can easily be obtained from other
common methods of representing requirements (such as use case descriptions), and
which can be applied to all kinds of functional and security requirements in a service-
oriented system.

HOMES Tests can be represented

In the walkthrough, several tests related to security and functional requirements in the
HOMES scenario were modelled according to the TTS meta-model. The test models
provided an accurate representation of these tests. The main representation of each test
model is called test story, and consists on a series of service calls between test actors, and a
set of assertions associated to these calls. In SecureChange, test stories are depicted in the
form of UML sequence diagrams. The model of a test also includes test data, which is
usually shown on a separate table. Though it was not possible to create test stories for a
large number of tests due to time constraints, for the tests covered in the exercise we
found that it was possible to generate suitable descriptions using test stories. We did not
find any case where the language limitations prevented us from showing part of a test on a
test story. Likewise, test data tables are straightforward representations which should be
applicable to any kind of test, though size considerations might make them difficult or
impossible to display in certain scenarios.

Meta model can be understood

In order to run the walkthrough, TID experts on the home gateway domain needed to
study the meta-model defined for the test evolution methodology. It was concluded that
this meta-model is intuitive and easy to understand for domain experts.

The meta-model has three clearly defined parts: the system model (containing both the
actual system and the deployed infrastructure), the test model, and the requirements
model. The internal structure of each sub-model shows all relevant components, and
matches common representations used in software engineering. The relationships
between model elements are consistent with reality, and can be followed intuitively.

One aspect of the meta-model that had to be studied more carefully was the relationship
between functional requirements, security requirements, and tests, since it was linked to
the particular style of security testing used in this methodology.

Model representations can be understood

The domain experts were shown the model representations used in the TTS methodology.
The representations used for the system model and requirements model could be
immediately understood with no prior knowledge of the methodology, whereas the test
model representation (based on test stories) required familiarity with the methodology in
order to be understood. In the TTS language, the system model is represented using a
conventional UML component diagram, which is easily understood by most developers.
Likewise, the requirement model shows a hierarchy of requirements defined by a name,
an identifier, and a short text description – also fairly intuitive. We did come across some
language elements, like assertions in the test model sequence diagram, which our experts

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 92 / 187

were not familiar with, even though they appear in the UML 2 standard. That said, we
found that once some basic concepts about the model and the structure of tests were
explained, this representation of test stories could be understood without problems.

State machines can be understood

As part of the walkthrough, the state machines associated to requirements, services and
tests in the TTS model were explained. We found that the model states and transitions had
been defined in an intuitive way, and that the way state transitions triggered changes in
other system elements could be understood without much effort.

Models can be generated by the stakeholder

Based on our experiences during the walkthrough, we estimate that the stakeholder
would be able to generate models for system, requirements and tests, following the TTS
meta-model, and with limited assistance from the researchers. As it has been mentioned in
previous sections, the system and requirements models show very little deviation from
conventional practices, so the stakeholder should be able to generate them without help.
By contrast, test models based on test stories are likely to be a new concept for the
stakeholder, which may require clarification or assistance when the methodology is first
adopted. After acquiring some experience with the model, the stakeholder should be ready
to use it in complete independence.

Models can be updated by the stakeholder

One of the tasks performed in the walkthrough consisted in introducing changes in
different parts of the model to show how they would propagate. Changing the model after
it has been defined is a straightforward activity which the stakeholder can perform in
complete independence.

Once the full model for system, requirements and tests has been created, introducing a
change on it, whether it is the addition, removal or modification or an element, should be
an easy thing to do for the stakeholder, even without assistance from the researchers.
Note that this refers specifically to the introduction of a new change in the model; the
propagation of said change is covered in a separate section.

All relevant model changes are propagated to tests

Upon close examination of the meta-model and associated state machines, we have
verified that the methodology is capable of propagating all kinds of relevant changes in the
model towards the tests.

The state machine transitions track model changes such as additions, modifications and
removals in either the system model, the requirements model, or the test model. Model
elements are interrelated, and changes are propagated across elements, so that the state of
the model should always accurately reflect whether a test is up to date.

Test selection criteria can define a variety of test suites

After examining the range of available filter criteria for automated test selection, we have
verified that it is possible to select tests according to a wide range of conditions, allowing
for a fine-grained configuration of test suites.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 93 / 187

The OCL-based test selection mechanism can return a subset of the existing sets based on
simple criteria such as test type (regression, evolution, stagnation), but it can also
consider the state of other model artefacts. This allows selecting tests based on their
association with a certain service, functional requirement or security requirement, or on a
combination such conditions. This basically covers any variable in the model which might
be relevant in the selection of a test.

Test selection is performed efficiently

One of the steps of the walkthrough included selecting a series of tests that matched
certain conditions. We found that the definition of test selection criteria can be performed
easily through short scripts, and that the execution of said scripts returns the desired
results almost immediately.

A typical OCL query to generate a test suite from the range of available tests takes only a
few (3-4) lines of code. More complex queries can be longer but should rarely involve
more than half a dozen lines, since each condition can be expressed in a single line.
Running the query doesn’t take longer than a couple of seconds, at worst.

Change propagation can be understood

The walkthrough showed the process of propagating a change in the model using this
methodology, in a clear and easy to follow way. We have reached the conclusion that
change propagation can be well understood by the stakeholder, particularly after a
practical demonstration.

The mechanism used to propagate changes in the model by means of triggers in state
machines is not excessively complex, and one can get a good impression of how it works
after seeing it in action with one or two examples.

One complexity that we found associated with this propagation of changes through state
machines was that, while individual state changes and their associated triggers were not
hard to follow, a change could often propagate across multiple system elements, and
tracing it by hand could become a cumbersome task. This means that having access to a
dedicated tool that keeps track of changes across the model is strongly recommended in
order to use this methodology.

Test selection can be understood

Our experience during the walkthrough shows that the most basic form of test selection
(e.g. using test type) can be immediately understood. Further refinements on test selection
criteria such as finding tests associated with a requirement or service require some
familiarity with the methodology and language, but aren’t otherwise particularly
challenging to understand.

The change propagation process can be used by the stakeholder

After using the change propagation methodology, we believe that the stakeholder can
follow this process independently, provided that adequate automated tools are available.

The existence of automated tools to keep track of the various state machines and change
triggers is a critical requirement to implement the methodology on any non-trivial system.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 94 / 187

For the walkthrough, we were able to perform the changes by hand because only a limited
amount of change operations and model artefacts were considered, but in a real
environment this manual approach would be unfeasible.

That said, once the more mechanical steps and state data tracking are taken care of,
change propagation is intuitive, and does not present significant challenges to the
stakeholder.

The test selection mechanisms can be used by the stakeholder

After trying the test selection mechanisms during the walkthrough, we have concluded
that the stakeholder can use these mechanisms in complete independence, provided that a
modelling tool with OCL support is available. Since test selection is based on OCL queries
over the model artefacts, the use of modelling software compatible with OCL is mandatory.
This should not pose a problem, since such modelling tools exist in the market.

With an adequate modelling tool, the test selection process is reduced to defining simple
OCL queries and running them, which can be easily managed by the stakeholder, even
without assistance from the researchers.

Human Effort

The level of human effort required by this artefact has been evaluated as three separate
categories: the learning effort, the effort associated with the usage of the model, and the
effort associated with the application of the methodology. Of these, the model-related
effort has been divided into generation effort for system, requirements, and test models,
and effort of model updates. Finally, the methodology-related effort has been divided into
saved effort due to change propagation, saved effort due to test selection, and overall
saved effort considering the methodology as a whole.

Learning effort

We observed that it takes between 4 and 6 hours of study for a developer to be familiar
enough with the language and methodology to start using it effectively. This includes a few
practical exercises, and assumes previous experience with the UML language and
modelling tools.

System model generation effort

We expect the effort for system model generation with this methodology to be very low. In
practice, most software projects should already have a system model with a very similar
structure to the one defined by the TTS meta-model, and this existing model could be
reused here with minor adaptations.

Requirements model generation effort

The effort to generate the requirements model (including both functional requirements
and security requirements) should be low. At worst, we should expect the system
requirements to be defined as a written document. The requirements model used here is
relatively simple, with each requirement defined by a name, an identifier, and a short text
description, as well as its associations towards other requirements. Generating this model

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 95 / 187

from the written document is a straightforward task, consisting mostly on copying names
and descriptions to the modelling tool.

Test model generation effort

We estimate that most of the effort of implementing the test evolution methodology will
lie in the task of generating test models. Unlike the models for the system and
requirements, we cannot expect to have an existing test model that can be reused – the
model will need to be created specifically for use with this methodology. The most costly
task of model generation is the creation of a test story for each individual test. With the
sequence diagram representation used in SecureChange, we expect that this can take
between half an hour and two hours, depending on the complexity of the test. By contrast,
defining associations between a test and the system services and requirements shouldn’t
take more than a few minutes per test. These effort estimations describe the worst case
scenario, which assumes the creation of test models for tests that are already designed
and implemented. This can happen, for example, when adopting the language and
methodology for a project after it has started. However, it is also possible to follow a
model-based test creation process, where generating a test story is one step in the design
of a test. While the time to generate a test model does not change, the effort can be
partially compensated by reductions in design time for the actual tests.

Model update effort

Keeping the models for system, requirements and tests up to date requires some effort,
which has to be added to the cost of generating the initial models. In general, the update
cost of each model is proportional to its generation cost. System model updates taking
little or no extra effort (in the assumption that an updated system model is required
whether or not the test generation methodology is used), whereas updates of the
requirements model takes up a higher but still small amount of effort, and test model
updates involve a significant time investment.

Effort saved through change propagation

The change propagation process saves effort (compared with the manual approach) each
time a change is introduced in the system, provided that the system is not trivial and that
there is a moderate number of tests. This effort savings grows with the complexity of the
system and the number of tests. Under the manual approach, whenever a change is
introduced in the system or its requirements, the developers need to run a series of
checks.

For a change in a system service:

 Check unit tests that are assigned to the changed element.
 Check for any test that can include calls (whether direct or indirect) to the changed

element.

For a change in a requirement:

 Check tests specifically assigned to the use case of that requirement.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 96 / 187

Check for any test that can be related to that requirement. With no explicit test model, it is
still easy to find the unit tests assigned to a class, or the tests assigned to a requirement
use case; it should be possible to identify these tests in a matter of minutes. However,
there is no clear way to determine which tests have a direct or indirect relationship to a
changed system artefact or requirement. One has to go over the list of existing tests and
revise their code (to find calls to a changed element) or their specification (to find if they
test a functional or security requirement). This process is prone to errors, and grows in
effort and complexity with the amount of services, requirements and tests in a system. By
contrast, the test evolution methodology propagates any change in the model, marking the
affected tests quickly, and with no additional effort other than updating the model – since
the propagation process should be mostly automated. It also has the advantage of being
much less prone to errors than the manual approach. Though it is difficult to give hard
figures for the time savings introduced by the methodology, we can estimate that:

 The methodology saves effort with each change operation. This will happen as long as
the cost of updating models is lower than the cost of looking for affected tests by hand
– which will be true unless working with a very simple system with very few tests.

 The effort saving increases with system complexity and the number of tests.

Overall, the effort savings for change propagation will depend on the frequency of changes
in the system, the complexity of the system, and the number of existing tests.

Effort saved through test selection

The test selection process saves effort (compared with the manual approach) each time
we select a set of tests for a test suite according to a non-trivial filter condition. This effort
savings grows with the number of tests in the system. Under the manual approach,
selection of a test suite involves going over the list of existing tests, and determining which
ones should be included in the suite, on a case by case basis. The complexity of this task
depends on the granularity of the filter conditions:

 If we just want to filter by test type (evolution, regression, stagnation), selecting a
suite is almost immediate. It is possible to have tests organized by type (e.g. by having
them in separate folders for each type) and easily take all tests of the chosen type for a
suite.

 If we want to filter tests calling a specific service or associated to a specific
requirement, we may need to go over the whole list of tests and check their code and
specification. The cost of this operation is proportional to the number of tests.

Overall, the effort savings for test selection will depend on the frequency with which one
needs to select tests for a suite (which usually coincides with the frequency of changes in
the system), with the number of existing tests, and with the granularity of the filter
conditions we want for the test suite.

Overall effort savings

The critical measure to evaluate the success of the test evolution methodology is the
overall amount of effort compared to the manual approach, after accounting for the cost of
model generation and updates, change propagation, and test selection. The following
factors need to be taken into account when comparing the effort required by the test
evolution methodology and the manual approach:

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 97 / 187

 There is a significant initial overhead for the methodology, due to model generation.
 There is a small overhead for the methodology for each change in the system, due to

model updates.
 The methodology saves effort for each change due to change propagation. This savings

increase with system complexity and the number of tests.
 The methodology saves effort for each generated test suite due to the automated test

selection. This savings increase with the number of tests. We can assume that test
suites will need to be generated whenever the system changes.

The evolution will result in saved effort whenever the total savings due to change
propagation and test suite selection exceed the initial cost of model generation. In general,
this will occur in complex systems with many tests, if they are subject to many changes.

Specific Industrial Criteria

Two specific industrial criteria have been considered for this artefact in the HOMES
scenario: completeness, the ability to include all relevant entities in the system, and
usability, ease of use for the methodology by the stakeholder.

Completeness

In order to evaluate the completeness criteria, we have considered separately how it
applied to the model of the HOMES scenario, to the security properties, and to the change
requirements under study.

All relevant entities in HOMES can be included in the model

We have determined that the system, requirements and tests used in the HOMES scenario
can be fully represented using the defined meta-model. This has been covered in the
section describing the applicability criteria. For a detailed explanation, see the discussion
of the following criteria:

 HOMES System can be represented.
 HOMES Requirements can be represented.
 HOMES Tests can be represented.

All security properties can be included in test model

The following security properties have been the focus of the work in the HOMES scenario:
secure extensibility, policy enforcement, resilience to trust changes, and security
expandability. Each of them can be represented in the model as a security requirement
associated with one or more functional requirements. The security properties of policy
enforcement and security expandability were specifically covered for this artefact, though
all of them are representable in the model.

All change requirements can be applied to the test model

Two main change scenarios have been considered for HOMES, called Core Security Module
Update and Bundle Lifecycle Operations. We have verified that the test evolution
methodology can be successfully applied to both of them. The change requirement called
Core Security Module Update deals with changes to critical security services within the

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 98 / 187

system. To apply the test evolution methodology on such changes, the system model needs
to be updated to reflect the final versions of the modified security services. Likewise, the
change may involve updates to security requirements, which will need to be applied to the
requirements model. After updating the models, the changes can be propagated as usual to
determine which tests are affected by the change. The change requirement called Bundle
Lifecycle Operations refers to the change of trust relationships for certain third party
service providers. Using the test evolution methodology, this means changing the security
requirements associated with certain services, to reflect the new level of trust assigned to
that provider. Once these updates are included in the requirements model, the
methodology can be applied to propagate the changes and determine the affected tests.

Usability

Practical application of the test evolution methodology requires using dedicated software
tools to assist the developer in the creation and maintenance of models, during change
propagation, and while selecting test suites. The usability criteria relates to the ease of use
of this software. It has not been possible to evaluate this criterion during the validation
exercise due to lack of availability of these tools. Instead, in this section we describe the
properties that we have found necessary for the usability of a tool assisting the test
evolution methodology. In addition, we discuss the expected complexities in implementing
said properties.

We identified six properties as necessary for the usability of the methodology: having all
models handled by a single tool, easily observing and editing of model element states, test
types, and associations between elements, clear notifications of test state changes, and
easily running of test selection queries. In addition to these methodology-specific
requirements, the functionalities of a general purpose modelling tool should also be
available.

All models can be handled by an integrated tool.

The ability to manage the system, requirements and test models in a single integrated tool
is required for the usability of the methodology, since using multiple tools in parallel is
cumbersome and requires additional effort for synchronizing the different models.
Achieving this requirement should be possible for any modelling tool. UIB has had
successful experiences achieving this with MagicDraw and a methodology-specific profile.

Model element states are easy to observe and edit.

One key parameter in the methodology model is the state associated with certain
elements. Being able to read and write these states should be a very common operation for
users. This issue depends on the GUI implementation; ideally, element states should be
readable while looking at a general view of the model, or at worst be available through a
single click. As for state editing, this should be carried out and traced automatically.

Test types are easy to observe and edit.

The type of a test (evolution, regression, stagnation) is another commonly accessed
parameter in the methodology. Again, this property is GUI-dependent. Test types should
be readable when looking at a test in the model, or be available through a single click.
Changes in test type should be carried out and traced automatically by the tool.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 99 / 187

Associations between requirements, tests, and services are easy to observe and edit.

The methodology defines a series of associations between requirements, tests, and
services, which users need to be able to browse and edit with ease. The tool should be
able to provide a list of all associations for a given model element by selecting that element
and making a few clicks. Likewise, there should be a way to obtain a list with all
associations of a given type (such as test-requirements assignments) in the model.

Changes in test states are notified clearly

When the test evolution methodology is applied, a change in the model is propagated,
resulting in changes of state and type for a series of tests. The tool should provide clearly
visible notifications whenever a test becomes non-executable, or when a requirement
stops being under test, so that the user can fix the situation as soon as possible.

Any implementation of the methodology should be able to display test state at any time,
and allow users to query for recent changes. In addition, in order to best address this
issue, the types of changes mentioned above should be automatically displayed in a GUI
element associated with model errors or pending tasks.

Test selection queries are easy to run.

The selection of tests to generate a test suite is a common operation that should not be
time-consuming. Optimal usability during test selection would require having an
integrated OCL interpreter within the modelling tool to assist in the OCL script generation.

VALIDATION RESULTS

An overview of the validation results is shown in Table 8. The results can be summarized
as follows. The applicability criteria for the HOMES scenario is favourable, in that the
stakeholder can apply the language and methodology almost independently – we estimate
that a small degree of assistance from researchers may be needed initially for model
generation, while the stakeholder gets used to generating test stories. In addition, the use
of dedicated tools to assist with the methodology should be a requirement for all non-
trivial scenarios.

As for the human effort criteria, we have determined that the methodology can result in
effort savings as long as certain conditions are met. Specifically, complex projects with
large numbers of tests that are expected to suffer frequent changes are the most
favourable scenario for the methodology. The development of a home gateway
architecture such as the one represented by the HOMES scenario would meet those
requirements. For scenarios with fewer tests, infrequent changes, or lower complexity, the
methodology will yield lower savings, or even result in greater overall effort – so its
application will need to be evaluated on a case-by-case basis.

Regarding the completeness criteria, we concluded that all security-related entities in the
HOMES scenario can be included in the language and methodology.

Finally, it was not possible to evaluate the usability criteria due to lack of access to
software tools on which to measure this usability. However, we have defined a set of
properties that will have to be met to achieve good usability, and provided guidelines to
implement them.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 100 / 187

Table 8 Telling Test stories (TTS) validation results

Criteria Evaluation

Applicability Stakeholder can apply with

assistance

HOMES System can be represented Yes

HOMES Requirements can be represented Yes

HOMES Tests can be represented Yes

Meta model can be understood Yes

Model representations can be understood Yes

State machines can be understood Yes

Models can be generated by the stakeholder Yes, with some assistance

Models can be updated by the stakeholder Yes

All relevant model changes are propagated to tests Yes

Test selection criteria can define a variety of test suites Yes

Test selection is performed efficiently Yes

Change propagation can be understood Yes

Test selection can be understood Yes

The change propagation process can be used by the

stakeholder

Yes, with automated tools

The test selection mechanisms can be used by the

stakeholder

Yes, with modelling tool

Human Effort Can save effort under certain

conditions

Learning effort 4-6 hours

System model generation effort Low

Requirements model generation effort Low

Test model generation effort Moderate (~1 hour/test)

Model update effort Low

Effort saved through change propagation Depends on system complexity,

of tests, # of system changes

Effort saved through test selection Depends on filter conditions, #

of tests, # of system changes

Overall effort savings Good for complex systems with

many tests, frequent changes

Completeness All relevant entities can be

included

All relevant entities in HOMES can be included in the

model

Yes

All security properties can be included in test model Yes

All change requirements can be applied to the test model Yes

Usability Not evaluated

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 101 / 187

Industrial considerations

An important consideration when applying the test evolution methodology in an industrial
environment is the availability of a software tool that supports it. Currently, UIBK works
on the methodology using the MagicDraw modelling tool with a profile for the
methodology to manage the models, along with the MoVE academic prototype to support
the transitions of state machines. A stakeholder looking to implement the methodology
should be prepared to adopt these tools or, alternately, work on the adaptation of its
modelling tools of choice.

Another factor to take into account is at which stage of a project the methodology is to be
adopted. The greatest efficiency will be achieved when applying the language and process
from the beginning of a project, since the test model generation effort can be leveraged if a
model-based testing approach is used. Adopting the methodology on a project already in
development or even maintenance is also possible, but will involve significant effort, as the
models will have to be generated while the system is subject to changes.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 102 / 187

4 POPS CASE STUDY

This section describes the validation activities and results of the SecureChange artefacts
for the POPS case study. This case study involves the software of an UICC card made of an
OS, a Java card platform that executes applications (applets), a set of applets and a
Globalplatform layer responsible of the card content management. The global scenario of
this case study concerns a change of the software embedded on the card that results from
adding a new application on the card or updating the platform layer due to an evolution of
the corresponding specification. We are then in the context of software update as change
requirement. The overall objective is to provide means that will facilitate the assessment
of those changes with respect to specific security properties.

4.1 Validation Organization and Conduct

The life cycle of an UICC card involves several actors: the developer of the software (the
card manufacturer), the developer of the application, the end-user (the card holder) and
the card issuer. In the scenario of mobile payment considered in the SecureChange project,
the card issuer is the mobile operator. Therefore the validation activities will simulate the
role of these actors:

 The developer when he has to develop a new application.

 The card manufacturer when he has to update the card software platform.

 The card issuer when he has to load a new application on the card.

The card lifecycle phases covered by this scenario are application development, card
software validation and applet post-issuance loading. For each role above, the
SecureChange project provides means (artefacts) to be used to check or to assess the
impact of the change. The application developer will use a static analyzer tool, from the
WP6, to check specific security properties for its application. The Card manufacturer that
updates its card software will formalize its change using artefact from the WP4 and will
validate the change using artefact from the WP7 and finally the card issuer will use
artefacts from the WP6 to “accept” a new application on its card.

The validation activities consist in playing the role of these actors for using these artefacts
and evaluate them in realistic industrial contexts. For each artefact, generally a specific
tool, the security engineer takes the role of the developer, and figures out a wide usage in
the R&D. The people we have involved in the validation activities have several kinds of
background and expertise (security engineer, PHD formal methods specialist, tool
developer, etc) in order to have the most representative sample of a generic R&D
population. This validation is intended to confirm the feasibility studies described in D1.2
and possibly provides recommendations.

4.2 High-level objectives

The change requirements considered in the SecureChange project for smart cards case
study have been taken from the concrete need in the day to day life of the security
engineer. Nevertheless, the strategy developed in the project does not take into account
the specific change of card software when the card is already in the field and that requires

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 103 / 187

generally patching the card after a bug or a defect is discovered in post-issuance. This kind
of change requires specific mechanisms that must be planned at card construction and are
not deployed for all the cards. Therefore, we preferred to tackle the classical use case
looking for methodologies and tools that allow avoiding this kind of situation.

The change requirements that we consider for an UICC card are the software update
that results from the development and/or loading of a new application on the card and the
update of the software platform due to an evolution of the specification.

The high-level objective is to prove/demonstrate/test that:

 The new application preserves (does not break) the consistency of the existing and
implemented security policies.

 The update of the Globalplatform implementation vs. the new version of the
specifications preserves.

For that, WP3, WP4, WP6 and WP7 collaborate to preserve information protection and
deny of service properties. More precisely, WP6 and WP4 provide tools and associated
modelling and verification techniques to check that the “new” application to be loaded on
the card verifies the information flow properties. The WP7 and WP3 will provide test
suites and traceability techniques to check that a new implementation with respect to an
evolution of the specification of the underlying platform respects the information access
control properties.

4.3 WP6 Verification

The following section describes the validation of the artefacts provided by the WP6 for
verification. Two approaches are proposed, an off-card verification used during the
development phase and on-board verification of an application on the device after its
loading. Therefore, the main validation criteria are usability and scalability for the off-
card tool and scalability and integration for the tools to be integrated into the card
platform.

4.3.1 Development-time Verification of JC Applets

VALIDATION SCENARIOS and EXERCISES

The development-time verification allows dealing with the software update as a change
requirement. The scenario for this kind of change concerns the developer or the product
builder that is developing (or receiving from an application provider) a new application to
be loaded on the smart card (this scenario may also concern the validation manager that
will assess the application). The developer is then the secure software designer that has to
ensure a set of security properties for its application. The main property considered is
denial of service: this robustness property is refined (concretized) into properties to be
checked on the source code, i.e.:

 Absence of run-time exceptions.
 Absence of infinite loop.
 Memory bound, avoiding memory overflow and memory access especially update

operations due to the durability of the EEPROM and the Flash.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 104 / 187

The exercise is that the developer will check the properties above using the Verifast tool.
The tool allows using the developed source code of the applet and the properties are
expressed using annotations (kind of comments). The two properties considered are the
absence of runtime exceptions and infinite loops, the last one, memory consumption, has
been delayed according to the feasibility studies (cf. D1.2). The validation criteria have
been defined using this scenario and conducting the exercise using several applets.

VALIDATION CRITERIA

The validation exercise consists in using the tool during the design and development
phase of the application. The validation criteria defined are:

 Scalability and performance.
 Modelling & expressiveness.
 Proof capability.
 User-friendly interface.
 Integration in the industrial development process.

VALIDATION RESULTS

Scalability & performance

Code size

This criterion is about the size of the application that could be tackled by the tool, and
generally the Java Card applications obey to a set of constraints.
The tool was tested on an applet “phone book” of ~ 2000 lines of code for which the
annotation process took about six hours. However, much of that time was spent trying to
understand the error messages raised by the tool when the annotations were incomplete
or incorrect. But these disadvantages could be minimized by the automatic generation of
some annotations (see Degree of Automation) and the understanding of the errors
messages will be facilitated by a regular use of the tool. Nevertheless, the debugging phase
of an application code is an important step that is generally re-used for a family of
applications.

Modularity of the verification

The global verification process (i.e. annotation + automatic verification) is not modular.
Even if the automatic verification itself is modular, the user will not necessary provide
every class and interface of the source. This means that the used APIs must be annotated
before starting the verification process. For methods that are not included in the audit
process (in our case, methods that do not contain loops and cannot raise a
NullPointerException), we still need to add a "minimal" contract so that the tool runs, e.g.:

//@ requires true;
//@ ensures true;

Speed of the verification process

This criterion may impact the usability of the tool in order to be integrated in the
development life cycle of an application. The automatic verification process itself is fast
and negligible in time compared to the annotation process (and even more compared to
the development time). Although it is only a small part of the global verification process, it
is one of the advantages of the Verifast tool.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 105 / 187

Change tolerance

This criterion evaluates the impact of a code change on the annotations or on the model
describing the application. With the VeriFast tool, like in all code verifiers, a change in the
source code may require a change of all the annotations impacted by this change, because
if the annotation does not correspond anymore to the actual behaviour of the application,
an error will be raised during the verification.

Properties Modelling

This criterion evaluates the expressiveness of the language to model the properties. In
particular, we evaluate the “pollution” of the code by the addition of annotations. The
amount of annotations must not exceed a certain percentage of the code. With respect to
the properties targeted in this exercise (no NullPointerException & no infinite loop), the
annotations take about 100 lines of code (5% of the code). This does not take into account
the annotations added in the APIs. In fact, the more properties there are to prove, the
more the annotations will grow. The amount of annotations may constitute, for a full
functional verification, the same size than the source code being analyzed.

This does not constitute necessary a disadvantage if we consider the completeness of the
set of properties to be checked. As the annotations are treated as comments by the
compiler, we can consider the set of annotations as the formal model of the application
and reuse it for a family of applications.

Proof capability

Degree of Automation

The proof of the properties expressed by the annotations is completely automatic and
does not require any interaction from the user. However some of the annotations could
probably be automatically generated by the tool (like, for example, the “object validity”
predicate, i.e. the object and its fields are allocated in the memory after the constructor
has been called).

User interaction

This criterion concerns the ability of the tool to provide hints to complete the proof/to
debug the annotation. When an error occurs during the verification (for example a syntax
error in an annotation or a missing hypothesis) the interface directly points towards the
error location in the source code and displays the corresponding error message. The
nature of the error is explained by the error message and in some cases, some generic "fix
hints" are provided, not specific to the current code. In other cases, no hint is provided at
all. As previously explained, the feedback given back to the developer is important when
we are verifying security properties. The Verifast tool could be improved in this promising
direction.

User-friendly interface

The required knowledge and expertise of the developer required to use efficiently the tool:
 The basics of Java Card but as the exercise are meant for the JC secure code developer,

this requirement is obsolete.
 The specification of the verified code when the objective is the formal verification of

the functional properties.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 106 / 187

 Knowledge of separation logic, pre-conditions, post-conditions, grammar and
keywords of the annotation language to be able to write JML-style annotations. This is
necessary to debug/modify contracts when the proof does not terminate. This will also
depends on the quality of the feedback provided to the user.

This last requirement is more restrictive as the developer is not necessary a Formal
Methods expert. But generally in the security field, the high educational quality of the
security engineer allows to learn rapidly the missing knowledge.

 Integration in the industrial development process

The criterion represents a summary of the validation exercise, e.g. identifying the missing
features to fully integrate the tool in the industrial application development process.

Improve the API management

The provided APIs miss extensive annotations for every basic Java Card API and
commonly used APIs (e.g. sim.*, usim.*, uicc.*). Since all the APIs must be annotated before
running the tool on an applet, the user is required to have the source code of every API
used in his applet. It is not the case generally, for some APIs the developer only has the .jar
and .exp files. The tool could assume that, for every un-annotated method, this method has
the minimal contract:
 //@ requires true;

//@ ensures true;

This would enable the user to add any missing API (like a proprietary API or an external
API) without having to annotate all its methods. An automatic generation of this minimal
annotation by the VeriFast tool would allow an incremental annotation process.

Allow an incremental use of the tool

This feature concerns the ability to run the tool on an applet before having annotated his
whole source code and APIs. An example of an incremental annotation process may be:

1) Run the tool with no annotation and examine the result.
2) Generate the minimal annotations with the tool.
3) Add the necessary annotations to prove the absence of NullPointerException.
4) Add the necessary annotations to prove the absence of infinite loops.
5) Add the necessary annotations to prove the functional correctness.

In the current state of VeriFast, the step 1 is not possible, and the step 2 must be done by
hand which is very time-consuming.

Enhance the tool’s documentation and output

The documentation of the annotation language should be greatly improved. The reference
manual currently contains a simple description of the language grammar; however there
is neither description nor any example in the manual. Moreover, during the annotation
process of a Java Card applet, many predicates must be used that are already defined in
the APIs such as "system()", "current_applet(...)" or "array_slice(...)". These predicates are
not documented anywhere, the user must look into the examples of Java Card annotated
applets contained in the tool to see how and when they are used. The output of the tool
should also be improved when:

 The proof does not terminate: the “fix hints” could include examples of annotated code
triggering the error and how to fix it for the most frequent cases.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 107 / 187

 The proof terminates: the only output of the tool when the proof terminates is a status
bar saying “0 errors found”. There is no way for the user to see how the tool managed
to prove his annotations. This could be problematic, specifically for security validation,
because it may correspond to nothing has been done by the tool and still outputs “0
errors found”, or there could be an error in the tool’s implementation. For a developer
or an evaluator to trust VeriFast, a detailed output of the proof scenario which
correctness can be manually checked is mandatory.

4.3.2 On-Device Verification

VALIDATION SCENARIOS and EXERCISES

The on-board verification is a security mean that addresses the software update change
requirement and the target security property is the information protection through
information flow control. The validation scenario consists in taking the role of the card
issuer that will decide the loading of an applet on its card if and only if the applet does not
break the security policy of the card.

For that, the SecureChange project developed software as a security component of the
card platform that will verify/check that the application respects the security policy
before being allowed to be installed and executed. It is one of the most challenging
techniques for smart cards due to the resources constrained and aggressive performance
features for this type of devices.

The scenario involves several actors: the application developer that will develop the
applet and writes down its contract, the card issuer that is the owner of the security
policy implemented on the card, against which the application will be checked and the
card manufacturer that integrates this new on-device checker as one of the component of
the platform.

Two approaches have been developed in the SecureChange project: The first approach
consists in checking that the applet, after being loaded on the card (byte-code format) and
before its installation (linking), respects given information flow control policy.

The second approach is a security-by-contract approach: The methodology is based on
“contract” technique. Each Java Card applet comes with a contract that describes which
services it needs from the other applets and which services it proposes to the other
applets. This methodology is based on two “tools”: a claim checker and a policy checker.
The security-by-contract approach is particularly challenging as several attempts in the
past have been done without success with respect to the scalability criteria. The targeted
security properties are:

 No illegal access to a service: to avoid collusion between applications when using the
services provided by other applications.

 Non-interference to avoid illegal information flows between applications.
 Global control of interactions: no illegal sequence (of method calls).

The exercise consists in integrating the tools as a component of the card platform. For that
a specific UICC implementation has been chosen and we developed the necessary code to
let this new component to collaborate with the other components.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 108 / 187

VALIDATION CRITERIA

In both approaches, “tool” (piece of software) will be added to the card platform that will
run on the card. Therefore the criteria against which the tools to be integrated will be
evaluated are essentially:

 Footprint.
 RAM consumption.

Those tools will check an application that embeds a contract in its code. Therefore, an
additional validation criterion is how the policy will be integrated to the applet’s code.
More precisely:

 How the policy is expressed.
 How the policy is attached to the bytecode of the applet.
 Overhead on the additional code size to be stored on card.

The feasibility studies conducted (described in D1.2) showed that due to time and
resource constraint, some implementation on card platform is not possible. In that case,
the criteria will be estimated by extrapolating the results obtained on a PC
implementation of the methods and tools. When the PC implementation is not available,
then only the theoretical complexity of the approach is evaluated.

VALIDATION RESULTS

 Security by Contract

The SxC tool, developed by UNITN, is made of:

1. A Java Card applet that stores the on-card security policy (i.e. the policy of all loaded
applets) and manages the update of this policy if a new applet is loaded or an existing
applet is deleted.

2. Two C modules:

a. ClaimChecker that checks if the security policy claimed by an applet is
consistent with its binary.

b. SxCInstaller that checks if this policy is consistent with the card security policy.

To evaluate those components, a dedicated library (apiobc) has been developed by GTO to
provide the API services to SxC modules. The SxC tool has been integrated and tested on
the PC simulator of a GTO platform. The tool has also been compiled on an IC architecture
to measure its exact footprint.

Footprint on the platform

The footprint corresponds to the space occupied by the tool (API included). The footprint
also includes the on-card security policy that must be stored permanently in the card. The
footprint of these components is measured on an industrial IC:

 PolicyApplet: 4 Kbytes.

 API: 856 bytes.

 SxCInstaller: 1004 bytes.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 109 / 187

 ClaimChecker: 976 bytes.

 On-card security policy: this component depends on the number of applets and the
number of services participated into the security policy.

The size is expressed by the following formula:

NumApplets*(2+3*NumApplets+2*NumServices)

where NumApplets, NumServices are the numbers of applets and services.

NVM consumption

The NVM (non-volatile memory) is used to allocate C structures and persistent Java
arrays. In SxC, PolicyApplet allocates two buffers of 135 bytes and 255 bytes respectively.
ClaimChecker and SxCInstaller do not consume any NVM because all structures are
temporary in RAM.

RAM consumption

RAM is used to allocate transient Java arrays and local C variables. PolicyApplet does not
use any transient array. The local variables of ClaimChecker and SxCInstaller consume less
than 100 bytes.

Overhead (space and time)

The space overhead includes the added space to the standard applet in order to express
the claimed security policy. Typically, that corresponds to the Contract custom
component. The size of this component depends on the complexity of the security policy
by the following formula:

12 + 2*num_provide +15*num_calls + (15+2*NumApplets)*secrules

where num_provide is the number of services provided by the applet; num_call is the
number of services this applet calls; secrules is number of access rules to service. On the
specific applet that we use, this size does not exceed 10% of the original CAP file.

The time measurement has been done on a PC simulator and hence, its absolute value is
not representative. Overall, on applet loading, SxC time overhead is around 15% (of the
total time needed to load and link a new applet).

Methods and tools to define the security policy

There is no defined language to describe the security policy. Instead a GUI (graphical User
Interface) is provided. The GUI allows the definition of the policy on the services
implemented into an applet. The policy is then attached to the original CAP file as its
Contract component. The defined policy can be exported to a binary file for future use.

However, using the current GUI to define a complex security policy is not very easy. The
usability of the GUI needs to be improved. In particular, the internal tokens of the services
should be replaced by the use of full-qualified names. Furthermore, displaying the current
policy of an applet is a useful feature that should be added to the GUI.

EVE_TCF

EVE-TCF developed by INRIA-lille partner implements the transitive information flow
verification. EVE-TCF is not yet tested on a GTO platform due to a licensing issue. We have

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 110 / 187

however compiled it with the source-code of the platform to ensure that its architecture
and development are compatible with the platform. EVE-TCF is composed of:

1. A Java Card applet (IFCInstallerApplet) that stores the on-card security policy (i.e. the
policy of all loaded applets) and manages the update of this policy if a new applet is
loaded or an existing applet is deleted.

2. A C module (verif) that checks the policy of the newly loaded applet with respect to the
on-card security policy.

EVE-TCF uses the same dedicated API library to access GTO platform components. It
means that no additional development is required for integration.

Footprint on the platform

The Java applet has a binary size of 3363 bytes. Because the tool is not compiled on an IC
architecture (on-target compilation), it is not possible to measure the footprint of its C
component. We estimated this footprint by an extrapolation approach, based on the size of
object file when compiled on a PC. Actually, the size of veriof.obj is the same than the
SxCInstaller.obj one and ClaimChecker.obj (see Footprint on the platform). As a result, the
footprint of verif.c on an IC is more or less that of SxCInstaller and ClaimChekcer (around
2000 bytes). The API footprint is the same as that used for SxC (i.e. 856 bytes). On-card
security policy: this component depends on the number of security domains, the number
of packages in these security domains, the number of classes in these packages and the
number of the methods in these classes. The size is expressed by the following formula:

10*NumDomain + (3+(5*NumMethods+5)*NumClasses)*NumPackages)

On the card platform of this exercise (2 security domains), the on-card security policy
takes less than 5% of the size of the total CAP files.

NVM consumption

The NVM (non-volatile memory) is used to allocate C structures and persistent Java
arrays. In SxC, IFCInstallerApplet uses 255 bytes for its policy buffer. Verif.c does not
consume any NVM because all data structures are in RAM. RAM is used to allocate
transient Java arrays and local C variables. IFCInstallerApplet does not use any transient
array. The local variables of Verif.c consume less than 100 bytes.

RAM consumption

RAM is used to allocate transient Java arrays and local C variables. IFCInstallerApplet does
not use any transient array. The local variables of Verif.c consume less than 100 bytes.

Overhead (space and time)

The space overhead includes the added space to the standard applet in order to express
the claimed security policy. Typically, that corresponds to the TCF custom component. The
size of this component is the same as that used for on-card security policy. The time
measurement is not done on the simulator due to licensing issue.

Methods and tools to define the security policy

EVE-TCF defines a dedicated language for describing the security policy. This language is
powerful and is very adequate to this task. The policy can be written in a text file and then
given to the EVE-TCF converter that transforms it into the TCF component of the CAP file.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 111 / 187

The use of this tool chain is easy (e.g. aliasing and full-qualified names are supported) and
suitable for managing complex security policy.

Global policy and non-interference

The verification of global policy and non-interference is not implemented and we have
evaluated them using the technical report D6.6 provided by the INRIA-Lille. We only
concentrate on the on-card policy footprint and the space overhead on the CAP file. The
other performance aspects are only available on an implementation.

Global policy verification

For the POPS use-case, the estimated overhead on the CAP file (i.e. the size of the custom
component) is 285+106N where N=n(n-1)/8, n being the number of states of the
automaton that defines the forbidden call sequences in the global policy. The technical
report provides the different values of this size depending on the value of n (from 1 to 10).
For the average-case (n=5), the space overhead is about 30% of the CAP file (603 bytes on
2000). The size of the on-card policy is 70+15N. For the average case, this footprint is
around 10% of the CAP file (115bytes on 2000). The conclusion from this evaluation is
that, the footprint and the space overhead are still reasonable in practice.

Non-interference verification

For the POPS use-case, the estimated overhead on the CAP file (i.e. the size of the custom
component) is more than 200% (4488 bytes on 2000 and 2127 bytes on 1000).

The size of the on-card policy is 941+N (for loading both applets). In other words, the
footprint is at least 30% of the CAP files (941 byte on 3000).

The conclusion from this evaluation is that, the footprint and in particular the space
overhead does not advocate the practical use of the non-interference verification for smart
cards.

4.3.3 Conclusion on the Verification

The verification artefacts provided by the project to face with the problematic of
preserving the security in case of software change in two ways, the off card verifiers like
verifast, that requires the source code of the applet, could be deployed to the services
providers (application developer) to check that their application (or new version) before
its deployment to the card issuers databases. When the source code is not available, e.g.
the card issuer receives only the cap files of the applications from the service providers,
the on board checkers deployed into the cards will allow us to verify the compliance of the
application with the security policy of the family of targeted cards.

4.3.3.1 Off-card Verification

The approach of using the source code for the verification of security properties is
probably the most promising Formal methods techniques to be used in the mobile
applications. This is due to the fact that it could be fully integrated in the process of the
secure code development (without an additional step of producing a formal model of the
specification). In this process, a significant amount of time is dedicated to the validation,
using code review and security audit.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 112 / 187

The security experts are interested by such a security validation tool for two main
reasons: they can adapt the rules to be checked according to their expertise, state of the
art, or the policy of the card issuers (their customers), secondly they can re-validate the
application with respect to a change, an additional property to be checked or an update of
the application. With the verifast tool, the speed of the verification is an appreciable
advantage, but the feedback to the user in case of error must be improved, e.g. with more
information provided. Useful information allowing the improvement of the code is a
valuable feature because the step of debugging the code is crucial.

With respect to the common criteria certification, the off-card verification of the security
properties of an applet could be used for the EAL7 evaluation (highest level requiring
formal modelling and verification). This fits in the research activities on the benefits of
static analysis tools to provide evidences for the evaluation. For example, the set of
annotations that constitutes the formal model of the application may be the formal model
of the design of the application (e.g. ADV_TDS). In that case, the informal correspondence
that must be provided between the formal model and the code source (JC in our case) will
be provided implicitly by the tool like Verifast. Another potential use of this kind of tool is
its use for the validation of “basic” applets (applet that do not require security
certification) before being allowed to be loaded on a certified product.

4.3.3.2 On-device Verification

The performance evaluation results show the two verification tools SxC (for verifying the
interaction between applications) and EVE-TCF (for verifying transitive information flow)
can be both embedded inside the conventional smart cards. Indeed, the persistent
footprint of each tool is roughly 6KB plus a small amount of memory reserved for storing
security policy. This footprint is relevant with respect to some 256KB of persistent
memory of current smart cards. For RAM consumption, each verification does not use
more than 100 bytes. This is compared favourably to roughly 5KB of RAM contained in the
current smart cards. Moreover, one may still optimize the implementation by using a pre-
defined RAM buffer (255 bytes) provided by the platform and hence avoid using any
additional non-volatile memory. The overhead in terms of applet loading time (15%) can
also be optimized using some specific design features of the platform.

The SecureChange project demonstrates once more the feasibility of the on-board
verification, considered as the most challenging technology for resources constrained
devices like smart cards. In the context of open cards that must accept the loading of any
applications in the field (post issuance), the ability to perform the checks on-board is a
market facilitator.

The solutions proposed by the project are very promising for treating safely the change
due to the ability to custom the security policy with respect to the targeted cards. For
example, besides the firewall security policy that ensures the isolation properties at
runtime, we may want to refine the isolation policy with respect to the card issuer security
requirements, with respect to its contracts with the service providers.

EVE-TCF technology for transitive information flow verification may be already used as
the validation results provides reasonable figures about footprint and overhead while
being usable without specific expertise. This technology allowing the verification of illegal
access to the services is very interesting in the context of open cards that will host
different applications from different sectors.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 113 / 187

For the non-interference and the global policy properties, that are more complex by
nature, the technology is not suitable for devices like smart cards with strong constraints
on the size. But it is a powerful technology that could be used for larger devices such as
mobile phone, for which we will have the same requirements of applications loading in the
field with the strong security constraints.

With respect to Common Criteria evaluation of a card integrating the on-device
verification, those on-board checkers will be evaluated as part of the product. Therefore
this technology is not here to facilitate the Common Criteria evaluation itself.

4.4 WP4 Model Design

4.4.1 UMLchange

VALIDATION SCENARIOS and EXERCISES

The scenario concerns the platform developer that will use a security mean allowing the
formalization of a change due to an evolution of the specifications of the GlobalPlatform
component (card Manager) of the card. More precisely, the platform developer (or the
security engineer), during the design phase, wants to check whether the new
implementation still verifies the security properties. For that, he will use a model of the
behaviour of the card manager according to Globalplatform specifications. The feasibility
study first concerned the use of UMLsec for the verification of the confidentiality of
transmitted data in a communication protocol. The conclusion for this exercise was that
the use of UMLsec is efficient for specific but small specifications (cf. D1.2). The second
exercise concerns the modelling of a subset of GlobalPlatform that allow focusing on
security properties about the card life-cycle, and more precisely life-cycle consistency.
For that, we evaluated UMLchange, a tool for modelling changes in UML notations.
UMLchange works on the top of several UML editors. The version that we used during the
evaluation is TOPCASED. Basically, UMLchange allows a user to define the change
constructors as UML stereotypes. UMLchange also provides proof tools (as plug-ins) to
ensure that any change respects the original model security policies. The validation will
concentrate on the use of the semi-formal language based on UML, with the hypothesis
that the security engineer has a basic knowledge and expertise using this language.

VALIDATION CRITERIA

The validation criteria that will be used are:

 Usability of the UMLseCh methodology (stereotype).
 Scalability.
 Ability to express security protocol elements and properties.

VALIDATION RESULTS

Usability

UMLchange is built upon well-known UML GUIs such as TOPCASED: this feature allows the
UML engineers to get acquainted very easily with the tool. The proof of SecureChange is
completely automatic using the plug-ins: this is a valuable feature for UML engineers.
However, several improvements can be done on the interface of the tool:

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 114 / 187

 The grammar for describing the changes is error-prone: a context-sensitive assistance
would be very helpful here to avoid issues due to typos.

 The error messages are not really helpful for identifying the issues: these messages
should be more informative.

An experienced user may also write a new proof tool (plug-in) to prove the security of the
changes. These plug-ins are developed in Java and are necessary to get confidence on the
changes, but they have not been evaluated during this exercise. Although we do not have
information on the difficulty of the plug-in development, let us note that this task can be
prohibitive for industrial projects because UML engineers may not necessarily have the
required expertise. Therefore, a framework for plug-ins development may be helpful.
Otherwise, we need a large library of pre-defined plug-ins.

Scalability

Built upon TOPCASED, UMLchange can face with industrial-size modelling projects.
Extensibility is definitely an advantage of UMLchange because new stereotypes can be
defined to express various kinds of changes. Pre-defined stereotypes can also be provided
for a specific domain, like the stereotypes defined for Global Platform’s card life-cycle
management to express changes resulting from the evolution of GlobalPlatform
specification.

From a security point of view, a question is raised here: to which extent we trust these
plug-ins? What happen if there are bug? A solution may be that these plug-ins generate a
proof trace that will be certified by an external prover.

Ability to express GP security elements and properties

The evaluation has been concentrated on the card life-cycle management that
corresponds to concrete and local security properties. It appears that most of the classic
security policies defined using UML, can be easily handled by UMLchange. The modelling
of more high-level and generic properties such as the integrity (non-interference)
property of the security domains in the UICC configuration seems to be more complex.
From a security evaluation point of view (e.g. Common Criteria), it is required that any
changes is traced during the product life-time (change request, request accepted, change
specified, implemented, change verified/validated, etc). Also change should be specified
and validated by different people. These features are particularly mandatory if UMLchange
is used for a Common Criteria certified products.

4.5 WP7 Testing

4.5.1 Model-based Testing Tool

VALIDATION SCENARIOS and EXERCISES

The artefact provided by the WP7 is a model-based testing tool that allows facing with the
specification evolution as a change requirement. This change requirement is the most
common use case for change for the platform part of the embedded software of o a smart
card. The scenario consists in taking the role of a validation engineer that wants to
minimize the validation activity of a new version of the software due to a change of
specification. A set of security properties have been validating model-based generated test

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 115 / 187

suites on a specific version of the platform (implementing the GlobalPlatform 2.1
specifications). The objective is to re-evaluate these properties on the next version of the
implementation (implementing the GlobalPlatform 2.2 specifications). The target security
properties are related to the card lifecycle consistency, and to the hierarchies of Security
domains:

 Applet and card life cycle:
o Whenever the card is in the TERMINATED state, it should not be possible to

revert to another state.
o It should not be possible for an application that does not have the Card

Terminate privilege to switch the card lifecycle state to TERMINATED.
 The consistency of the Security domains hierarchy with respect to the privileges: the

properties are related to the Authorized Management (AM) privilege of Security
Domains (SD): Ensure that for any execution, it can never happen that two (or more)
SDS with AM are on the same branch of the hierarchy.

 Properties related to the secure channel capabilities of the SD: ensuring that whenever
a SD is moved across the hierarchy, the relevant authentications and accesses to
secure channels are cleaned accordingly.

The tool is built upon a software component called EvoTest. EvoTest leverages upon
Smartesting’s model-based testing tool TestDesigner by extending it with three
SecureChange software components:

 A security testing component: the schema-based test generator.

 A component for selective test generation method: SetGAM.

 A component for publishing the evolving test results: SmartPublisher.

For the purpose of the evaluation exercise these components have been used in
conjunction with a specific UML/OCL model for Global Platform 2.2, and a model adapted
for Global Platform 2.1.

VALIDATION CRITERIA

The validation criteria, according to the feasibility studies conducted against the usability,
scalability and usability and discussed in the D1.2, will concern the model, the schema-
based test generator, and eventually the SetGAM + SmartPublisher package. The validation
criteria are then organized around:

 Testing Model.

 Testing component.

 Evolution Testing component.

VALIDATION RESULTS

Test model
For the evaluation exercise, two models are used:

 A full model for Global Platform 2.2.

 A model for Global Platform 2.1, that essentially differs from the first one on the life-
cycle management part.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 116 / 187

These models are defined using UML for the static part (description of the global state of
Global Platform), and OCL for the dynamic part (corresponding to the legal transitions
induced by the execution of Global Platform commands). These models are built inside
IBM RSA (Rational Software Architect), extended with custom extensions provided by
Smartesting for the edition of OCL pre and post-conditions and export of the model to the
test generation engine. The use of this software suite is mandatory for examining the
model’s internals and usage within the EvoTest environment. Each Global Platform
command is modelled as an UML operation attached to the Card class, and equipped with
a pre and a post condition. The model is to be used for generating tests, so the semantics of
these conditions is as follows: a sequence of alternating model states and
model operations is called a legal test case for this model if and only if:

 the state is the initial state (as specified in the model),

 for each integer :

o the pre-condition for operation is true in state ,

o the post-condition for operation is true in state .

Each branch of each condition may then be labelled with a specific comment (@REQ) that
allows giving a name to the corresponding behaviour of the system. The role of the
generation engine is then to generate a minimal set of legal test cases such that a given set
of behaviours (specified a set of @REQ) is achieved. This set may then be used as a test
suite for the validation of these behavioural requirements.

Scalability
The model in itself is quite large. Its aims at covering the whole Global Platform
specification (up to some abstractions), and therefore the task of maintaining it across
evolutions is not a negligible. Provided that one has the sufficient level of knowledge
(evaluated in section Usability, Required Experience), maintaining the model across
specification evolutions requires deep understanding of its internals. The time required
obviously depends on the scope of the change (as it is detailed in section Usability, Level of
details).

Usability

Level of details
The Global Platform model describes the Global Platform specification by specifying all
Global Platform specific APDUs (up to the abstractions listed in section Relevance).
Moreover, each operation is correctly documented, and relates to the APDU (or sequence
of APDUs) to be sent to the card. In the same line, each abstract value’s meaning is
correctly documented, and their names are often self-explanatory. Therefore, the model
exhibits the right level of detail for the generation of executable tests, using a suitable
adaptation layer.

Required expertise
Maintaining the model across specification evolutions requires a good knowledge of the
following:

 UML modelling, in particular class diagrams, object diagrams, state diagrams, for
modifying static aspects of the model (i.e. the type of Global Platform states) and the
initial state.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 117 / 187

 OCL language in order to modify the dynamic aspects of the model (i.e. pre- and post-
conditions attached to the operations).

 Understanding of the test generation process, in particular the semantics of the pre-
and post-conditions.

 Some experience with the IBM RSA tool (based upon Eclipse) and the SmarTesting
extensions (in particular the model animator).

 Understanding of the model’s internals.

These results are to be mitigated with the impact of the evolution change on the model.
Indeed, the model-based testing approach has the huge benefice of keeping the amount of
modifications to the model roughly proportional to the amount of modifications in the
specification, provided that the model is sound and readable. It is the case for this model,
which is cleanly structured and reasonably well documented. In case of minor changes to
the specification, make the corresponding modification of the model does not require
expertise in the fields mentioned above, especially when the modification requires only
rewriting a specific pre- or post-condition, for which the OCL code is already present. On
the other hand, larger modifications, such as the ones that imply the modification of the
class diagram or adding of a brand new operation requires a much deeper knowledge.

Relevance
The model of Global Platform 2.2 for SecureChange is a faithful representation of the
whole specification, up to a certain number of abstractions:

 The cryptographic primitives are abstract, and defects in their use are simulated
through specific parameters, allowing us to test for situations such as invalid key
length, incorrect MAC, incorrect signature and so on.

 The application loading process is abstract, through the use of a one-shot “load”
primitive. Issues with sequencing of load commands, incorrect DAP blocks, length of
blocks, etc may be simulated using specific additional parameters.

 All kinds or array parsing processes are abstract, including:

o TLV-encoded data fields.
o AIDs validation.
o Keys validation.
This is done through the use of dedicated parameters for the various parts of the data
fields and various parsing errors that may happen, and through the use of enumerated
data types (for instance for the AIDs).

The Global Platform specification is written in such a way that it includes both low-level
aspects and high-level aspects. For instance, the whole appendix E of the specification
describes all basic cryptographic bricks for the secure communications (SCP’02), and is
abstract in the model. This would make this model unsuitable for general security testing.
Nevertheless, the model has the right level of detail for security testing in the scope that
has been defined for the POPS case study. More precisely, all operations related to the
query and modifications of the life-cycle state of the card are accurately modelled, and the
level of detail is close enough to the specification. Moreover, all life-cycle related checks in
all Global Platform commands are completely and correctly modelled.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 118 / 187

Security testing component
The Schema-Based Test Generator (SBTG) extends the test-generation functionalities of
TestDesigner by allowing a security expert to express security-related scenarios using the
artefacts from the UML/OCL model. The SBTG consists in:

 An Eclipse-based test schema editor integrated with IBM RSA, which allows us to
enter properties using the Schema-based language defined in deliverable 7.3.

 A modified test generation engine that takes into account the test schemas.

The main objective of the SBTG is to allow expressing properties that reflect real-life
critical scenarios that may be lacking from a pure functional test suite. Using it, it becomes
possible to reach a specific state of the system/model using a more intricate path than the
shortest one. This is particularly useful for lifecycle-related tests, where security testing
may involve trying to build up vulnerability by applying critical side-effects on the global
state of the system.

Scalability
Since EvoTest is to be considered as a research prototype, this part of the evaluation is not
relevant.

Usability
This criterion is used to evaluate the level of knowledge of the model’s internals needed to
express the properties. The schema language allows expressing security properties using
universal quantifiers that allow guiding the generation process by iterating through the
operations and behaviours defined in the model. The quantifiers may be nested, and the
language allows to express that the call to an operation shall be repeated (at least once, or
any number of times). The user is also given the ability to filter the generated tests by
using OCL predicates inside the formulas of the language. The language itself is sound and
well defined, and uses a very intuitive syntax. The expression of any arbitrary property
nevertheless requires a good knowledge of the model in order to express the relevant OCL
predicates. Deep knowledge of the OCL language itself is not required, since the predicates
will consist of a simple equality used to check the value of a part of the model’s state.
Nevertheless, although the language itself is very easy to learn, it seems mandatory to at
least understand the class diagram of the model to express non-trivial properties.

Relevance
The language seems expressive enough to accurately describe any interesting security test
intention. It is pertinent in the context of life-cycle or card content management related
security testing for Global Platform. The ability to query the model in its own language
while quantifying over operations and iterating them properly fills the gap between pure
functional testing and security testing.

Evolution testing component
This component is made of:

 The SeTGaM selective test generation tool, which allows using previous test suites to
automatically classify the generated tests with respect to their state and relevance
according to the specification changes.

 The SmartPublisher component, that allows to reflect these successive generations
and store the evolving status of the tests in an incremental test repository.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 119 / 187

Using SeTGaM, the generated tests (according to the schemas defined using SBTG) are
classified in three test suites:

 Evolution test suite, that contain tests targeting new requirements that were absent
from the former test model.

 Regression test suite, which contains tests that were not impacted by the evolution of
the model.

 Stagnation test suite, which contains tests that are invalid with the new version of the
model.

There is also a deletion test suite, whose purpose is to serve as a garbage can for the test
engineer, who can tag tests in the stagnation test suite that should not be considered for
future evolutions.

Usability

Level of expertise
There is no specific expertise required, provided that the model and the security
properties are already defined. SeTGaM in itself is a push-button tool. It is nonetheless
mandatory to understand precisely how the test suites are constructed, and therefore to
have a complete understanding of the content of deliverable 7.3.

User-friendliness
The SeTGaM component is available in the IBM RSA tool as a frame that allows selecting
two successive versions of a model, and launching the generation and classification
process. The results are presented synthetically using two graphs, giving information
about the volume of each test suite, and the number of tests for each status. It is also
possible to get for each status the list of test having this status, and for each of these tests
the sequence of operations to be executed. This graphical interface itself is kept very
simple, and in this sense is very usable. It is nevertheless to be considered as a research
prototype, and as such exhibits some minor problems:

 The need for a naming convention for the test suites could be relaxed by using specific
interface elements.

 The global interactions between SeTGaM, SBTG and TestDesigner are not always
clear; it would be useful to have more guidance on the global workflow for using the
whole EvoTest component.

Relevance
The building of these test suites is based on the automatic computation of the status of a
test, which has some relevance in an industrial context. A test may have the following
status:

 New tests, corresponding to new behaviours introduced by the new version. Since
each such test necessarily activates a portion of fresh new code, they are the ones to
be tested first and more thoroughly.

 Outdated tests, corresponding to behaviours that have been crossed out of the new
versions. These ones cannot, by definition, be reproduced on the new version of the
product. They may be used in some case to ascertain that some explicitly removed

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 120 / 187

behaviour is completely unreachable, as is often the case for "maintenance updates"
of a specification.

 Un-impacted and re-executable tests. While the distinction between these two
statuses is quite subtle from our point of view, and not really relevant for our
validation activity, these tests as a whole constitute the basis of the regression
campaign.

 Updated and adapted tests, which correspond to behaviours existing in both versions
of the specification, but have to be reached in a different way. The production of these
tests is certainly the most time-consuming activity in manual testing.

Therefore, this component allows organizing the testing activity, by prioritizing the tests
to be run. The automatic generation ensures behavioural coverage (so negative testing
and bounds testing is properly achieved), and the automatic classification clearly defines
the regression test suite. Moreover, this approach allows linking tests that have essentially
the same objective, but may be expressed in completely different ways. It is a task that
may not always be achieved by manual testing, but it is still extremely useful for the
purpose of maintaining a constant quality of the test suite across time and evolutions.

4.5.2 Conclusion on the Model-Based Testing

Several experiences have been made using model-based testing for smart cards software.
Generally, the major drawback highlighted by the validation teams is the time spent for
modelling and the maintenance of the models in case of specification evolutions. Although
the organization of the generated test suites and the traceability are appreciable, the
validation engineer prefers modifying the tests suites that the model itself.

The SecureChange project confirms these results on the modelling effort but at the same
time demonstrates that, in case of change, it is easier to report a minor modification on the
models than investigating the test suites to identify the place for modification. This is an
important feature for smart cards platforms. Generally, a smart card manufacturer
develops and maintains few platforms (called baselines), traditionally one per market
sector. Then several branches are developed corresponding to family of products. This
means that the software that constitutes the platforms, such as Globalplatform
implementation, will be concerned by specification evolutions or small modification for
customization purpose. Therefore, the SecureChange model-based technology will be
helpfully to report the changes on the models developed once that on the million of tests
that are maintained in the tests benches. This is why the effort must continue to improve
the usability of the modelling and we advocate that this technology must be planned and
used early enough in the product life cycle. Although expertise in UML / OCL seems to be
an important requirement, it is rapidly damped in time as with any programming
language. Usually the R&D people are either already familiar with these languages, or have
the scientific background needed to be quickly trained.

One of the main advantages of this technology is its use in the context of Common Criteria
certification. Generally, if a product has been CC certified, any modification requires at
least a “delta” certification. This requires to the developer providing the evaluator with
evidences on the impact of the change and in particular, how to perform the testing on the
modified product. It is clear that the SETGAM methodology and tool will facilitate this step
with the categorization of the test suites and the corresponding reports.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 121 / 187

5 VALIDATION CONCLUSIONS

This section provides some concluding validation remarks about the SecureChange
solutions. The validation activities highlight that SecureChange results address to a certain
extent the lack of support in engineering evolving systems and guaranteeing security
properties. The three case studies highlighted how WP artefacts support industrial
practices. Moreover, the validation activities allowed us to identify alternative usages for
SecureChange solutions. Table 9 shows the validated WP artefacts by each case study.
Previous sections report the validation results for each artefact. Overall, SecureChange
artefacts provide suitable support to specific engineering activities that concern the
modelling and verification of security features with respect to changes. The case studies
and the conducted validation activities highlighted how the different artefacts support
SecureChange objectives.

Table 9 WP Artefacts validated by case study

Case Study WP Artefact

ATM WP2 Change Driven Security Engineering

MoVE Tool

WP3 SeCMER Modelling

SeCMER Tool

WP4 Integration of Design Modelling Solutions

WP5 Risk Assessment Language and Methodology

Risk Modelling Tool

HOMES WP2 Security-As-A-Service (SeAAS)

Change Patterns

WP6 VeriFast

Security-by-Contract (SxC)

WP7 Telling Test Stories (TTS)

POPS WP4 UMLchange

WP6 Development-time Verification of JC Applets

On-Device Verification

WP7 Model-based Testing Tool

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 122 / 187

One of the drawbacks is the complexity of the models captured by different SecureChange
solutions. It is critical therefore the tool support for each WP artefact. Hence, future work
would need to improve the usability of such tools before deploying them into industrial
domains. Obviously, training would play a critical role for such deployments. Another
critical aspect is the integration of different models. The evaluation activities have shown
an extent of integration between different artefacts. However, integration among and
traceability across models would need to be supported carefully. Integration and
traceability aspects play an important role in supporting an engineering process tailored
to deal with changes and security feature, like the one supported by SecureChange. Finally,
the validation activities highlighted how the different artefacts support and comply with
industrial practices, hence how SecureChange fits current industrial requirements.
However, domain experts found SecureChange artefacts of particular relevance for their
daily work. However, it is still questionable whether or not SecureChange artefacts can be
delivered in industrial contexts in their current versions. It has emerged that it would be
necessary to tailor further SecureChange artefacts in order to customise them to specific
application domains. However, validation activities highlighted alternative usages (e.g.
systematic model-based support of requirements elicitation and risk analysis) identified
by domain experts that were not envisaged initially. Domain experts pointed out how
relevant activities (e.g. dealing with changes) receive little support by current engineering
practices. Therefore, SecureChange artefacts provide various advancements with respect
to current industrial practices. Moreover, they would provide valuable support to
activities (e.g. brainstorming activities on changes) that are currently dealt
unsystematically. In conclusion, the validation of SecureChange has effectively highlighted
how delivered technical artefacts address the goal of ensuring "lifelong" compliance to
evolving security, privacy and dependability requirements for long-running evolving
software systems.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 123 / 187

References

[1] SecureChange, D1.1 Description of the scenarios and their requirements, 2010.

[2] SecureChange, D1.1.1 Selected Change Requirements and Security Properties, 2010.

[3] SecureChange, D1.2 Applicability of SecureChange Technologies to the Scenarios, 2011.

[4] EUROCONTROL, European Operational Concept Validation Methodology, E-OCVM Version 3.0,
Volume I, February 2010.

[5] SESAR JU, WP 14 - SWIM Technical Architecture, Description of Work (DoW), Version 4.0,
2008.

[6] M. S. Lund, B. Solhaug, K. Stølen: Model-Driven Risk Analysis – The CORAS Approach, Springer,
2011.

[7] International Organization for Standardization: ISO 31000 Risk Management – Principles and
Guidelines, 2009.

[8] EUROCONTROL safety regulatory requirements (ESARR), ESARR 4 – risk assessment and
mitigation in ATM, Edition 1.0, 2001.

[9] SecureChange, D.3.4 Proof-Of-Concept CASE Tool, 2012.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 124 / 187

APPENDIX

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 125 / 187

A. Validation Process

Validation is a generic term has wide usage but with a diversity of interpretations. Even in
one area, such as software engineering, it may have different meanings and
characteristics. We adopted an Operational Validation, which encompasses aspects of
Technical Validation with user-centred evaluation. In our view, Validation is the Process
needed to demonstrate how a system, a methodology or a operational procedure can
function in real life conditions with the required level of performances, security and
operability. This involves checking that technological feasibility and target safety level,
cost-efficiency, end-users acceptability are all achieved. The Operational Validation can
also be defined as the process of answering the question: Are we building the right
system? In addition, to the Technical Validation and Verification that can be taken as
answering the question: Are we building the system right? We used a systematic and
generic approach to Validation, by applying state-of-the-art validation methods, like the
European Operational Concept Validation Methodology (E-OCVM) [4], that can be used for
all the various contributions and results of the SecureChange project.

We validated the SecureChange artefacts by exposing them to a set of industrial case
studies emerging from the three reference domains showing the security characteristics
and complexity of the evolving infrastructures the SecureChange framework is expected to
manage. We are thus providing a set of real world, industrial relevant prototypes and
scenarios based on our application case studies and on the techniques and tools currently
available in the project. The industrial evaluation has been used to assess the feasibility
and effectiveness of the SecureChange solutions. Each Case Study plays a different role
with respect to the validation of the SecureChange solutions. Meanwhile there are
complementarities and interplays among them.

Each SecureChange outcome has been both technically and operationally validated, with
respect to a particular application domain and security problem. Thus, the Definition of
different scenarios within the three different Case Studies addressed the following points:

1. Happening in a real work setting (e.g. realistic procedures, realistic conditions) and
proposing realistic situations clearly addressing evolutionary issues.

2. Covering main security, privacy and dependability problems emerged during the
analysis phases.

3. Including main resources (Software, Hardware, Liveware) and describing their
interaction highlighting criticalities.

Validation Methodology

It is always difficult to demonstrate that Validation objectives of a project are achieved,
and for this reason the high level Validation objectives have to be broken down into
detailed Validation criteria. The detailed Validation criteria have a direct influence on the
more general Validation objectives and, being more detailed, are more easily measurable.
This process of decomposition has to be repeated several times resulting in a hierarchical
structure of objectives (Tree Model as shown in Figure 52).

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 126 / 187

Figure 52 Decomposition and identification of Validation Criteria

The decomposition of objectives ends with the identification of basic indicators, which
represent the ‘leaves’ of the ‘leaf’ in the tree model. Note that indicators can be quite
diverse. For instance, some indicators can be measurable. Whereas, other indicators might
highlight compliance with standards or development processes, adoption of development
tools and so on. Indicators will then require different types of evaluations. Figure 52
shows a simple example of how we can identify criteria and determine the trial, by
decomposing iteratively the criteria in order to obtain evidences that can be measured or
evaluated in a quantitative or qualitative way. Different types of methods can be used to
support the Validation:

 Deterministic, e.g. formal proof of compliance to a specification, demonstration of
Security and Dependability requirements, and so on.

 Probabilistic, e.g. quantitative statistical reasoning to establish a numerical level.

 Qualitative, e.g. compliance with rules that have an indirect link to the desired criteria
(e.g. compliance with standards, staff skills and experience).

Note that the proposed evaluation and validation process is similar to other assessment
processes. For instance, system assurance relies on the construction of safety cases for the
judgment of the adequacy of system safety.

Indicators can provide information about the lower level of the detailed Validation
objectives and they can be evaluated through measures taken during ‘experiments’ and
trials carried out in different Validation Sessions. The evaluation of objectives at a lower
level of the hierarchy should allow the evaluation of the objectives on the next level up of
the hierarchy. An iterative approach to evaluation will, therefore, move up the hierarchy.
In practice, all leaves of the tree can be measured and, therefore, assessed. Their
assessment allows the assessment of the ‘father’, the assessment of the father and the
other objectives at the same level allow the assessment of the ‘grandfather’ and so on.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 127 / 187

The measurement of an element through its ‘decomposition’ into more measurable
entities is a common approach in science, and a very similar approach has been
successfully used, for example, in software engineering to measure the Quality of
Software, or in the Air Traffic Management domain trough development of the European
Operational Concept Validation Methodology (E-OCVM) or in Safety Assessment. The main
steps in our iterative process, are drawn from the ones proposed in the E-OCVM
Methodology, encompassing both operational Validation and technical Validation and
Verification, can be summarized as:

1. Set the evaluation strategy:

 Identify the user of the project outcome.

 Identify the outcome usage and purpose.

 Identify the general objectives of the Validation.

 Identify what criteria are to be used.

2. Determine the trial:

 Decompose the criteria iteratively, in order to obtain evidences.

 Decide how they will be evaluated (e.g. measured and analysed).

 Set out a plan of how the trial will be conducted.

3. Conduct the trial:

 Go through the various evaluation methods (e.g. tests, formal verifications,
simulations, application into case studies, user interviews, expert walkthrough).

4. Determine the results:

 Assess the evaluation results (e.g. analysis of the measurements taken, expert
judgements).

On the one hand, the Validation process support also the identification of the Maturity of
the SecureChange outcomes and shows a body of evidence that relates to the overall
project maturity with respect to the different Validation criteria identified [1][2][3]. On
the other hand, scopes and objective of the Validation are likely to mature in line with the
advancing maturity of the concept. As the concept becomes more mature, the Validation
activity must become more rigorous and realistic. Validation Exercises may be larger and
the scope and objectives of these exercises and their objectives becomes more complex
and exhaustive.

Figure 53 shows the main phases (V0-V5) forming the E-OCVM and the implementation
ones (V6-V7) for the validation and deployment of new operational concepts in ATM [4].
Even if the proposed approach is very general and can be effectively applied to different
domains, the identification of the specific Validation Criteria and of the Methods to be used
in their assessment, strongly depends on the nature of the particular results under
evaluation.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 128 / 187

Figure 53 E-OCVM Operational Concept Validation and Implementation

Data Collection and Analysis

Many different evaluation and assessment methodology can be used for technical
validation and verification: intensive testing and quantitative simulations, Formal
Verification, Expert Evaluation Techniques, Task Analysis and Direct Observation, Users
Feedback Collection, System Data Collection. We hereby provide a small collection of the
most common evaluation methods for industrial prototypes that can be implemented by
means of scenarios:

Ethnographic approach / contextual enquiry
The ethnographic approach emphasises the understanding of behaviour in context
through the participation of the investigator in the situation being studied as an active
member of the team of users involved in the situation. It provides a descriptive report,
utilising a range of approaches, mainly informal interviews and observational techniques.
The ethnographic approach is essentially the traditional systems analysis approach
enriched by contact with sociology and social anthropology.

Interviews
Interviews are commonplace techniques where domain experts are asked questions by an
interviewer in order to gain domain knowledge. Interviewing is not as simple as it may
appear and comes in 3 types: unstructured interviews, semi-structured interviews and
structured interviews. The type, detail and validity of data gathered vary with the type of
interview and the experience of the interviewer. Interviewing is still the most widely used
method of finding out what users want.

Focus groups
A focus group brings together a cross-section of stakeholders in an informal discussion
group format. Views are elicited by a facilitator on relevant topics. Meetings can be taped
for later analysis. Focus group is useful early in requirements specification. It helps to
identify issues which may need to be tackled and provides a multi-faceted perspective on
them.

Wizard of Oz
This approach involves a user interacting with a computer system which is actually
operated by a hidden developer - referred to as the ‘wizard’. The wizard processes input
from a user and simulates system output. During this process the user is led to believe that
they are interacting directly with the system. This form of prototyping is beneficial early

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 129 / 187

on in the design cycle and provides a means of studying a user’s expectations and
requirements. The approach is particularly suited to exploring design possibilities in
systems which are demanding to implement.

Rapid prototyping (software or hardware based)
This method is concerned with developing different proposed concepts through software
or hardware prototypes, and evaluating them. In general the process is termed ‘rapid’
prototyping. The development of a simulation or prototype of the future system can be
very helpful, allowing users to visualize the system, and provide feedback on it. Thus it can
be used to clarify user requirements options. Rapid prototyping is described as a
computer-based method which aims to reduce the iterative development cycle. Interactive
prototypes are developed which can be quickly replaced or changed in line with design
feedback. This feedback may be derived from colleagues or from the experiences of users
as they work with the prototype to accomplish set tasks.

Storyboarding
Storyboards are sequences of images which demonstrate the relationship between
individual screens and actions within a system. A typical storyboard will contain a number
of images depicting features such as menus, dialogue boxes and windows. The formation
of these screen representations into a sequence conveys further information regarding the
structure, functionality and navigation options available within an intended system. The
storyboard can be shown to colleagues in a design team as well as potential users, which
allows others to visualise the composition and scope of an intended interface and offer
critical feedback. This method can be used early in the design cycle where the use of
storyboards supports the exploration of design possibilities and the early verification of
user requirements.

Expert walkthrough
A walkthrough is a process of going step by step through a system design getting reactions
from relevant staff, typically users or experts role-playing the part of users. Normally one
or two members of the design team will guide the walkthrough, while one or more users
will comment as the walkthrough proceeds. This technique is most often used where there
is a relatively unstable prototype or a written procedural specification.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 130 / 187

B. ATM Validation Plan

WP Artifact Contact Version Date of
Availability

Starting
Date

Action Description

WP2 Change
driven

security
engineering

UIB n/a n./a. June 2011 Workshop
with ATM

Experts

Technical workshop to
refine and complete the
evaluation of WP2
process, already
started in Y2 by means
of direct application to
the ATM Case Sudy.

MoVE Tool
support

UIB v 0.9.x 31 March
2011

September
2011

Tool Live
Demo during

Workshop

Live and interactive
Demo of the MoVE tool.
Some simple modeling
activities carried out by
ATM experts with the
support of WP2
technical partners.
Direct observations by
validation experts.
Feedback collection
trough questionnaires
and semi-strucutred
interviews.

WP3 SeCMER
conceptual

model

UTN v 3.19 31 January
2011

April 2011 Methodology
Evaluation

Application of the
SeCMER conceptual
Model to the ATM Case
Study. Model review
and refinement of the
WP3 artefact to adapt
to ATMs.

June 2011 Workshop
with ATM

Experts

Technical workshop to
refine and complete the
evaluation of WP3
conceptual model.

SeCMER
case tool

UTN v 2.0 9 May 2011 September
2011

ToolLive
Demo during

Workshop

Live and interactive
Demo of the SeCMER
case tool. Some simple
modeling activities
carried out by ATM
experts with the
support of WP3
technical partners.
Direct observations by
validation experts.
Feedback collection
trough questionnaires
and semi-strucutred
interviews for tool
improvememtn and
customisation.

v 3.0 9 May 2011 September
2011

Workshop
with ATM

Experts

Live and interactive
Demo of the final
version of the SeCMER
case tool.

WP4 Prof of
Concept

Integration
of design

modelling
solutions

THA D4.4
v1.0

31 January
2011

September
2011

Methodology
Evaluation

Direct application of
the Proof of Concept
Integration of
Modelling Solutions to
the ATM Case Study.
Evaluation of
completeness,
effectiveness, dmain
suitability and user

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 131 / 187

acceptability of the
integrated modelling
solutions.

D4.4
v2.0

31 October
2011

September
2011

Workshop
with ATM

Experts

Technical and
operational workshop
to refine and complete
the evaluation of D4.4
integrated modelling
solutions.

WP5 Risk
Assessment

Method

SINTEF n./a. 31 January
2011

June 2011 Methodology
Evaluation
by Expert

Walktrough

Workshop with DBL
Safety and Security
ATM Experts to
present, analyse and
review the WP5 Risk
Assessment
Methodology. Possible
foreseen exploitation in
the SESAR Programme.

December
2011

Questionnaires Preparation and
distribution to a wider
audience of ATM
stakeholders of a
SecureChange Risk
Assessment
Methodology and Tool
description in order to
collect more feedback
about the applicability
and effectiveness of
WP5 arteacts in the
ATM domain

 Risk
Modeling
Language

SINTEF n./a. 31 January
2011

June 2011 Workshop
with ATM

Experts

Technical and
operational workshop
to evaluate the
completeness,
expressibility and
flexibility of the Risk
Modelling Language.

Prototype
Risk

Modeling
Tool

SINTEF D5.4 31 January
2011

September
2011

Tool Live
Demo during

Workshop

Live and interactive
Demo of the WP5
Prototypee tool. Some
simple modeling
activities carried out by
ATM experts with the
support of WP5
technical partners.
Direct observations by
validation experts.
Feedback collection
trough questionnaires
and semi-strucutred
interviews to refine
and improve the tool.

D5.5 31 january
2012 (beta

version)

September
2011

Tool Live
Demo during

Workshop

Live and interactive
Demo of the final
version of the WP5
Prototype tool case
tool.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 132 / 187

C. SeCMER Conceptual Model

The SecMER conceptual model (Figure 54) identifies a set of core concepts and
relationships.

Figure 54 SeCMER conceptual model

 Actor: an entity that can act and intend to want or desire.

 Action: an entity performed by an actor, which can generate events, and can have
preconditions and post-conditions.

 Resource: an entity without intention or behaviour.

 Asset: an entity of value that needs to be protected.

 Goal: a proposition an actor wants to make true.

 Requirement: is a refinement of a goal.

 Security Goal: a goal which prevents harm to an asset.

 Trust: is a relationship between two actors over a dependum. It specifies the belief of
the trustor that the trustee won’t misuse the dependum.

 Delegation: is a relationship between two actors over a dependum. It specifies the
passage of responsibilities between two actors.

 Protects: is a relationship between a security goal and asset. It specifies that a security
property needs to be satisfied for the specific asset.

 Consumes: is a relationship from an action to a resource denoting that the process
consumes the resource.

 Produces: is a relationship from an action to a resource denoting that the process
generates the resource.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 133 / 187

Since there is no visual syntax specific for SeCMER’s concepts, we will use the SI* visual
syntax to illustrate the instantiation of the concepts. Table 10 shows the mapping between
SeCMER’s concepts and SI* concepts while Figure 55 shows the graphical notation for the
SI* concepts.

Table 10 Mapping of concepts between SeCMER and SI*

SecMER concepts and relationships SI* concepts and relationships

Actor Actor

Action Task

Resource Resource

Asset Goal, Resource, Task

Goal Goal

Security Goal Soft Goal

Trust relationship Trust relationship

Delegation relationship Delegation relationship

Protects ----

Consumes Means-end

Produces Means-end

Figure 55 Graphical representation of SI* concepts

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 134 / 187

D. CORAS Definitions

 Asset: Something to which a party assigns value and hence for which the party

requires protection.

 Consequence: The impact of an unwanted incident on an asset in terms of harm or

reduced asset value.

 Likelihood: The frequency or probability of something to occur.

 Party: An organization, company, person, group or other body on whose behalf a risk

analysis is conducted.

 Risk: The likelihood of an unwanted incident and its consequence for a specific asset.

 Risk level: The level or value of a risk as derived from its likelihood and consequence.

 Threat: A potential cause of an unwanted incident.

 Treatment: An appropriate measure to reduce risk level.

 Unwanted incident: An event that harms or reduces the value of an asset.

 Vulnerability: A weakness, flaw or deficiency that opens for, or may be exploited by, a

threat to cause harm to or reduce the value of an asset.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 135 / 187

E. ATM/WP4 Model Design

Case Study Walkthrough

This ATM case study walkthrough presents a number of modelling steps following the
industrial version of the system engineering process, as described in D4.4b. This
walkthrough allows for the validation of the methods and tools used at each step, but also,
and most importantly, the links between the different engineering steps in terms of
traceability, consistency and other relevant factors. This appendix shows some of the
modelling steps of the ATM case-study walkthrough. The scope of the ATM case study
walkthrough is pictured below (Figure 56).

Figure 56 Scope of the ATM case-study walkthrough

The following text explains the steps and then provides the schedule.

The 1st step is the operational analysis of the system “as is”, which is normally done by the
Air Navigation Service Provider, taking into account all constraints imposed by the
regulator. At this level, the description deals with goals, missions and/or capacities, and
resources. For SecureChange, we have used Si*.

The 2nd step is the security need elicitation for the system “as is”. This step uses the
modelling result of step 1 as input. There is no tool in SecureChange that covers this. It
was therefore performed through brainstorming sessions between DBL, THA and SINTEF.

The 3rd step is the risk assessment performed at the operational level, for the system “as
is”. This step uses the results of steps 1 and 2 as input. Tool support was provided by
CORAS.

The 4th step is the system / software specification by the industrial system provider
contracted by the ANSP. This specification should relate only to the part of the system that
is being contracted. It therefore takes as input a small part of the result of step 1. In our
case, the scope of the contracted system was defined as a complete ATC centre, without

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 136 / 187

AMAN. Tooling was provided by the Thales SOA Modelling Suite (SMS) because the latter
is now the modelling environment with which the Thales risk assessment DSML is
integrated.

The 5th step is the security risk assessment performed at the system (meaning equipment)
level by the industrial system provider. This risk assessment takes as input the results of
step 4 (i.e. the description of the equipment in terms of process, components and services)
and of step 3 (i.e. the high-level security requirements imposed by the ANSP on the
subcontracted system).

We have decided to skip step n°6, which would have been the engineering of the solutions
to cope with the identified risks. The main reasons for this decision are that SecureChange
does not provide any specific technology to cope with that, and also because this step can
be performed by iterating on step 4.

The 7th step is the detailed design. In our case-study, we focussed on a very “small” part of
the ATC centre. The main objective here was to feed the formal verification of the security
properties of step n°8. Therefore, the compulsory choice is a detailed design model using
UML / EMF, namely Papyrus. Again, modelling here was kept minimal because the
SecureChange project does not provide any specific technology to cope with step.

The 8th step is the formal verification of the security properties using UMLsec. This step
takes as input the results of step n°7.

Finally, we have decided not to perform step 9, which would have been the risk
assessment at the detailed design level. The main reasons for this decision are that the
UML model produced in step n°7 will be simplistic (only adapted by UMLsec evaluation)
and that we did not expect any additional lessons learnt with respect to the risk
assessment step already performed in steps n°3 and 5.

These 9 steps close the 1st iteration, describing the system before the change. For the 2nd
iteration, we performed all the 9 steps again, introducing the AMAN change at each step.
Again steps 6 and 9 were skipped.

The table below recalls the work share, specifying the main tools used, the responsible
partner and the approximate dates of provision, considering that the responsible actor
was responsible for both iterations, once for the system “as is” without the AMAN, and
once with the system “to be” with the AMAN.

Iteration Step
n°

Step name Responsible
actor

Tool Type
(sub-steps)

Actors Provision
date

1 1 Operational
analysis

DBL Si* Offline
modelling

DBL June 2011

Model
consolidation

(by TelCo)

DBL +
UNITN +

THA

July 2011

Model
upgrade &
validation

DBL +
UNITN +

THA

July 2011

1 2 Security need
elicitation

DBL + THA Brainstorming Offline
modelling

DBL July 2011

Model
consolidation

(by TelCo)

DBL +
THA +
UNITN

July 2011

Model
validation

Security
expert

(THA or

July 2011

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 137 / 187

Iteration Step
n°

Step name Responsible
actor

Tool Type
(sub-steps)

Actors Provision
date

DBL?)
1 3 Risk assessment

performed at the
operational level

SIN CORAS Offline
modelling

SIN July 2011

Model
consolidation

(by TelCo)

SIN + DBL August
2011

Model
validation

Security
expert
(DBL +
THA)

Septembre
2011

1 4 System/software
specification

THA Thales SMS Offline
modelling

THA August
2011

Model
consolidation

(by TelCo)

THA Septembre
2011

Model
validation

DBL Octobre
2011

1 5 Risk assessment
performed at the
system/software
architectural level

DBL + THA Thales RA
DSML

Offline
modelling

THA Septembre
2011

Model
consolidation

(by TelCo)

THA+DBL Octobre
2011

Model
validation

Security
expert
(SIN)

Octobre
2011

1 6 Security
specification

- - - - -

1 7 System /software
detailed design

THA Papyrus Offline
modelling

THA Septembre
2011

Model
consolidation

(by TelCo)

THA+DBL Octobre
2011

Model
validation

Archi.
expert
(THA)

Octobre
2011

1 8 Security design
(formal
verification)

THA UMLsec Offline
modelling

THA Septembre
2011

Model
consolidation

(by TelCo)

THA +
TUD

Septembre
2011

Model
validation

Archi.
expert
(THA)

Octobre
2011

1 9 Risk assessment
performed at the
detailed design
level

- -

1 - Debriefing
iteration 1

ALL - F2F meeting? Octobre
2011

2 1 Operational
analysis

DBL Si* Offline
modelling

DBL 17/10/11

Model
consolidation

(by TelCo)

DBL +
UNITN +

THA

24/10/11

Model
validation

DBL
(ENAV?)

26/10/11

2 2 Security need
elicitation

DBL + THA Aniketos
STML

Offline
modelling

DBL 24/10/11

Model
consolidation

(by TelCo)

DBL +
THA +
UNITN

31/10/11

Model
validation

Security
expert

02/11/11

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 138 / 187

Iteration Step
n°

Step name Responsible
actor

Tool Type
(sub-steps)

Actors Provision
date

(THA or
DBL?)

2 3 Risk assessment
performed at the
operational level

SIN CORAS Offline
modelling

SIN 31/10/11

Model
consolidation

(by TelCo)

SIN + THA 07/11/11

Model
validation

Security
expert
(THA)

09/11/11

2 4 System /software
specification

THA Thales SMS Offline
modelling

THA 07/11/11

Model
consolidation

(by TelCo)

THA+TUD 14/11/11

Model
validation

DBL 16/11/11

2 5 Risk assessment
performed at the
system /software
architectural level

DBL + THA Thales RA
DSML

Offline
modelling

THA 14/11/11

Model
consolidation

(by TelCo)

THA+DBL 21/11/11

Model
validation

Security
expert
(SIN)

23/11/11

2 6 Security
specification

- - 21/11/11

2 7 System /software
detailed design

THA Papyrus Offline
modelling

THA 21/11/11

Model
consolidation

(by TelCo)

THA+TUD 28/11/11

Model
validation

Archi.
expert
(THA)

30/11/11

2 8 Security design
(formal
verification)

TUD UMLsec Offline
modelling

THA 28/11/11

Model
consolidation

(by TelCo)

TUD+THA 05/12/11

Model
validation

Archi.
expert
(THA)

07/12/11

2 9 Risk assessment
performed at the
detailed design
level

- -

2 - Debriefing
iterations 1 & 2

ALL - 12/12/11

Iteration n°1: The system “as is”

Step n°1: Operational analysis using Si*
Below are presented a number of operational diagrams realised with Si* for the ATM case-
study. Each of these diagrams has a specific focus: the actors (cf. Figure 57), the resources
(cf. Figure 58), the overall ATM (cf. Figure 59), arrival sequencing (cf. Figure 60) and
equipment (cf. Figure 61).

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 139 / 187

Figure 57 All the actors

Beyond presenting all the actors, Figure 57 also presents the scope of the contracted
system, which will be designed during step n°4. It is to be noted that equipment is
modelled as an actor when it realises some goals. Equipment is also modelled as a
resource in terms of physical equipment. In Figure 58, both intangible resources and
tangible resources are modelled.

Figure 58 All the resources

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 140 / 187

For the overall goal modelling, a number of “Golden Rules” were applied, of which:

 Golden Rule n°1: there should be no sub-goals without an upper-goal.

 Golden Rule n°2: goals are a state of affair, not activities; therefore goals are best
expressed in the past tense. Nouns are used occasionally for continuous goals, i.e. goals
that are never accomplished, e.g. ATC service.

Figure 59 was not meant to be “readable” in this document. It is provided to show the
complexity of the case-study and the scalability capacities of Si*.

Figure 59 Overall ATM view

To enhance the readability of the goal decomposition, the arrival sequencing goal was
decomposed in a separate diagram (Figure 60). The tool does not provide consistency
assurance between the overall goal modelling diagram (Figure 59) and the focused arrival
sequencing diagram (Figure 60).

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 141 / 187

Figure 60 Focus on arrival sequencing

Figure 61 Focus on equipment

Likewise, the diagram focused on the equipment enhances the readability of the model,
but suffers from the absence of consistency assurance with the other diagrams. The ATM
operational modelling was stopped when the model was deemed sufficient to perform the
operational-level risk assessment.

Step n°2: Security needs elicitation
Following a number of discussions, inquiry and brainstorming sessions between the
involved partners, the following 5 security needs were agreed upon:

 identification and authentication,

 need-to-know/ least-privilege,

 auditing support,

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 142 / 187

 robustness / checking of external messages,

 secured physical access to equipment, e.g. HMIs, cabinets.

Care was taken to focus only on security needs, not on safety. Each security need is further
discussed below. Identification and authentication is enforced just by means of check
points at the entrance of the buildings. There is no other kind of IT supported
identification and authentication (e.g. no login at the controller working position).

Need-to-know/least-privilege implies having a fine understanding of the roles. On the
operational side, the main roles are: Supervisor(s), Air Traffic Controllers (Planner and
Tactical), and for the TMA: Coordinator. On the technical side, the main roles are:
Technical Supervisor, System Administrator, and Technical Personnel. All the different
roles have specific working positions, often located also in separated rooms; the Control
Room is always separated from the Technical Room. Access control is mainly enforced by
means of physical security (i.e. different locations, locked doors, guards).

Logging for auditing purposes is currently mainly focused on accidents and incidents,
rather than on malicious external attacks (i.e. more on safety issues than on security
threats). In particular, all the radio-frequency communications and all the CWP logs are
recorded.

In the scope of this case-study, we tried to focus on auditing with respect to security
issues. With respect to robustness, the communication (in/out) with the external world is
mainly based on:

 phone ‘point-to-point’ communications,

 dedicated radio frequency communications,

 flight plan data; repetitive flight plans (RFPL) may represent a fallback solution in case
of failure to comply with robustness,

 coordination data,

 receipt of flight surveillance data.

Finally, the secured physical access to equipment copes with the intrinsic geographically
distributed nature of ATC systems. For example, one can stand near a radar without
having access to surveillance data, so identification is not necessary, but protecting the
radar from physical damage by a malicious actor or accidental event is still required.

Step n°3: Operational-level risk assessment using CORAS
This section presents the risk modelling resulting from the risk assessment that was
conducted with respect to the Si* models and the identified security needs in the ATM case
study. The Si* models are the output from the 1st step of the work plan, whereas the
security needs were elicited during the 2nd step. The risk assessment was conducted as the
3rd step at the operational level, and the risk models were made using CORAS threat
diagrams. The risk assessment scope is the APP service provisioning asset, which is a sub-
part of the complete Si* models. Risk assessment includes risk identification, risk
estimation and risk evaluation. The risk identification results are shown first.

The risk estimation involves the estimation of likelihoods and consequences for the
identified unwanted incidents. The risk evaluation involves determining the risk levels
based on the likelihood and consequence estimation, and comparing the results against

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 143 / 187

the predefined risk evaluation criteria. Scales coming from a EUROCONTROL risk
assessment document were reused in this case-study.

Risk identification

Figure 62 Identification and authentication, physical access and auditing

Figure 62 shows unwanted incidents related to insufficient identification and/or
authentication in the APP control room. The diagram also addresses secured physical
access. The potential security problem related to insufficient auditing is modelled by the
vulnerabilities preceding the identified unwanted incidents. In this case, lack of auditing
may contribute to the likelihood of the unwanted incidents, partly because actors may be
reluctant to initiate incidents in case they know they are audited, and partly because lack
of auditing makes it harder to identify adequate preventive means for incidents that
reoccurs. Notice that External actor is modelled as a deliberate threat, i.e. someone with
malicious intents. The ATCO is modelled as an accidental threat, i.e. it is assumed that
he/she is not acting maliciously.

Figure 63 Identification, authentication and auditing, technical room

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 144 / 187

Figure 63 shows an unwanted incident related to insufficient identification and/or
authentication in the technical room. Notice that the threat External actor is modelled as
deliberate, whereas the ATCO is not. It is hence assumed that the ATCO does not intend to
act maliciously, but rather goes beyond his/her area of responsibility and authority. The
potential problem of insufficient auditing is addressed similar to the previous threat
diagram in Figure 62.

Figure 64 Least privilege and auditing

Figure 64 shows an unwanted incident related to lack of the principle of least privilege in
the APP control room. Auditing is as before modelled as a vulnerability that may
contribute to the likelihood of the identified unwanted incident.

Figure 65 Robustness wrt external messages, phone lines

Figure 65 shows two unwanted incidents related to robustness, with respect to external
messages transmitted by point-to-point phone lines. Secured physical access to equipment
(phone lines) is also relevant.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 145 / 187

Figure 66 Robustness with respect to external messages, radio

Figure 66 shows two unwanted incidents related to robustness of external messages
transmitted by radio. Secured physical access to equipment (radio antenna) is also
addressed.

Figure 67 Robustness with respect to external messages, radar

Figure 67 shows an unwanted incident related to the robustness of external messages
transmitted by radar. Secured physical access to equipment (radar) is also addressed.

Likelihoods, consequences and risk levels
Each pair of an unwanted incident threatening a supporting asset, and a feared event on a
primary asset constitutes a risk. In order to determine the risk level, we need to
determine the likelihood and consequence of each unwanted incident. Likelihood is the
frequency or probability for something to occur, whereas a consequence is the impact of
an unwanted incident on an asset in terms of harm or reduced asset value. The likelihood
scale is based on EUROCONTROL documents, where likelihood is defined as follows: The
extent to which an event is expected in a given time scale. In security risk analysis this factor
may be uncertain, and is often described in qualitative terms. The likelihood scale of four
levels is given in Table 11.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 146 / 187

Table 11 Likelihood scale

Level Description

1 Frequent Several incidents per year. This includes very frequent incidents (e.g. Many per
day).

2
Occasional

An Incident is likely in 10 years. At most a small number of incidents may be
expected in any year.

3 Possible Incidence cannot be estimated; however, it is realistic to anticipate the event.

4 Rare The incident can be discounted.

The consequence scale is based on the same source, where impact (consequence) is
defined as follows: The unwanted consequence of a security incident; the impact may be
qualified in financial, opportunity, efficiency, safety or any other relevant business or ATM
operational terms. The impact scale of five levels is given in Table 12 with their
interpretation in safety, business and reputation.

Table 12 Impact (consequence scale)

 IMPACT

Level Safety Business Reputation

1 Very High Large scale loss of life

2 High Significant risk of fatality Long term business
damage

Loss of Operating
Licence

3 Medium Increased safety risk Significant business
damage

Litigation or Criminal
Conviction

4 Low Short term safety risk Significant loss Public reputation
damage

5 Insignificant Insignificant Insignificant Insignificant

Notice, importantly, that the purpose of the description of the impact levels in terms of
safety, business and reputation is to give the risk analysis participants reference points so
as to understand what degree of impact the various levels intend to describe.

The risk levels are defined by means of a risk matrix, which yields a risk level for each
combination of likelihood and impact. The risk matrix is based on the same
EUROCONTROL document and given in Table 13.

Table 13 Risk matrix

 Likelihood

4 Rare 3 Possible 2 Occasional 1 Frequent

Im
p

a
ct

1 Very High High Very high Critical Critical

2 High Negligible High Very high Critical

3 Medium Negligible Tolerable High Very high

4 Low Negligible Tolerable Tolerable High

5 Insignificant Negligible Negligible Negligible High

The risk evaluation criteria define for each risk level whether the risk is acceptable or
must be evaluated for possible treatment. The risk evaluation criteria proposed in

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 147 / 187

Table 14 were approved by the participants before proceeding with the risk estimation.

Table 14 Risk evaluation criteria

Negligible Acceptable

Tolerable Acceptable (Should be monitored; should be treated if treatment cost is justifiable)

High Unacceptable

Very high Unacceptable

Critical Unacceptable

Risk estimation
The task that remains is to do the risk estimation. This is conducted directly in the CORAS
threat diagrams by annotating each unwanted incident with a likelihood value, and each
relation between an unwanted incident and asset with a consequence value. It is also
useful to estimate and document likelihoods for each threat scenario. First, this will
increase the understanding of the most important sources of risks. Second, assigning
likelihoods to threat scenarios may facilitate the likelihood estimation of the unwanted
incidents that the threat scenarios lead to. Third, likelihood estimates of threat scenarios
yields a better basis for validating the results. It may also be useful to estimate conditional
likelihoods to the relations from threat scenarios to other threat scenarios, and from
threat scenarios to unwanted incidents. For a scenario/incident A that leads to scenario
incident B, a conditional likelihood describes the likelihood that A will lead to B when A
occurs. A conditional likelihood is often specified as a probability, i.e. a value in the
interval [0,1].

Notice, however, that at this phase of the development lifecycle the system is not yet
designed. For the identified unwanted incidents the objective is therefore to estimate their
severity in terms of consequences. Given these consequences, likelihoods are assigned to
unwanted incidents that ensure acceptable risk levels as a result. In this way the likelihood
estimates serve as requirements to the security risks that the system may be exposed to.

In the following, Figure 68 shows the risk estimation related to insufficient identification
and/or authentication in the APP control room. It is important to notice that the likelihood
that an unauthorized external actor accesses a CWP in the control room is rare, even if the
likelihood of an entering to the control room is possible, because the other ATCOs will
recognise the external and malicious actor and give an alert. Moreover, we would like to
clarify that the ‘switch’ between TC and PLC role is very frequent and often useful and
recommended. Thus, it not always leads to a deterioration of APP services (that, in fact,
has a lower likelihood). Figure 69 shows the risk estimation related to insufficient
identification and/or authentication in the APP technical room. In the technical room,
many different companies employees collaborated together, thus the identification of an
external actor is more complicated (leading to a lower likelihood that in the previous
mentioned case). Figure 70 shows the risk estimation related to the principle of least
privilege. It is important to mention that the redundancy of information and the
information exchange among different roles is a common work practice and it has often a
good impact on the APP service provisioning, leading to a deterioration of the services due
to the interference of tasks just in few cases. Figure 71, Figure 72 and Figure 73 show the
risk estimation related to robustness of external messages with respect to phone lines,

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 148 / 187

radio signals and radar data, respectively. The redundancy of communication and
surveillance apparatuses reduces in many cases the likelihood of the threat scenarios.

The consequence estimations are documented on the relations between the unwanted
incident and the identified assets. The consequences range from Insignificant to Very high
as defined in the impact scale of Table 12. In the diagrams below, each of the documented
consequences represents a (rough) aggregate of the impact of the unwanted incidents on
safety, business and/or reputation. Because the aggregated consequences alone may be
insufficient for understanding how to adequately mitigate unacceptable risks (which
depends on the impacted domain), we have in Table 15 specified of the impact of each
incident in the respective domains together with the resulting overall aggregate.

Table 15 Qualification of consequence estimates

 Impact
Incident Safety Business Reputation Aggregate
Unauthorized execution
of APP services

High Medium High High

Provisioning of APP
services deteriorates due
to mix of ATCO roles of
supervising and
controlling

High Medium Low High

Provisioning of APP
services deteriorates due
to PLC-TCC role mix

Low Negligible Negligible Medium

Provisioning of APP
services deteriorates due
to loss of data access

High Medium Low High

Provisioning of APP
services deteriorates due
to interference of TCC
and PLC tasks

Low Negligible Negligible Medium

Provisioning of APP
services by TCC and PLC
deteriorates due to loss
of integrity of phone
communication

High Medium Medium High

Provisioning of APP
services by TCC and PLC
deteriorates due to loss
of phone lines

High Medium Medium High

Provisioning of APP
services by TCC and PLC
deteriorates due to loss
of radio communication

High Medium Medium High

Provisioning of APP
services by TCC and PLC
deteriorates due to loss
of integrity of radio
communication

High Medium Medium High

Provisioning of APP
services by TCC and PLC

High Medium Medium High

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 149 / 187

deteriorates due to loss
of radar data

Figure 68 Risk estimation

Figure 69 Risk estimation

Figure 70 Risk estimation

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 150 / 187

Figure 71 Risk estimation wrt robustness wrt external messages: Phone lines

Figure 72 Risk estimation wrt robustness wrt external messages: Radio

Figure 73 Risk estimation wrt robustness wrt external messages

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 151 / 187

Risk Evaluation
The identified and estimated risks are evaluated with respect to the already defined risk
evaluation criteria. The results are in the following documented by means of CORAS risk
diagrams. These diagrams show all the risks with their risk level, as well as the threats
that initiate them and the assets that are harmed.

Figure 74 Risk evaluation

Figure 75 Risk evaluation wrt identification and authentication and auditing

Figure 76 Risk evaluation wrt least privilege and auditing

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 152 / 187

Figure 77 Risk evaluation wrt robustness wrt external messages

Figure 78 Risk evaluation wrt robustness wrt external messages

Figure 79 Risk evaluation wrt external messages

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 153 / 187

We use the risk matrix to give a summary and overview of the results of the risk
evaluation. In Table 16 each of the ten identified risks is plotted into the risk matrix
according to the estimated likelihood and consequence. We see that there are three
negligible risks, whereas three risks are high and four risks are very high.

Table 16 Risk evaluation overview

 Likelihood
4 Rare 3 Possible 2 Occasional 1 Frequent

Im
p

ac
t

1 Very High

2 High R1 R2 R4 R6
R7 R8 R9 R10

3 Medium R3 R5

4 Low

5 Insignificant

Step n°4: System / software specification using SMS
The Thales SOA Modelling Suite (SMS) is not a work product of SecureChange, but it has
been used as a representative workbench to integrated Thales’ risk assessment DSML
matured in the scope of SecureChange. Thus, it has been used for the system / software
specification of the ATM case-study, and is briefly described in what follows The purpose
of SMS is to capture the different concerns related to service oriented architecture (SOA)
architectures specifications and implementations. It is a research prototype still under
development. Ultimately, it shall provide its users with domain specific languages (DSLs),
as well as their corresponding graphical representations, that allow specifying efficiently
SOA concerns. Such DSLs are designed by capturing the concepts associated with SOA
standards, technologies and Thales engineers’ specific requirements. Using SMS, users can
create a project and use the modeller to edit SOA models, eventually generating the
appropriate documents. Multiple features are available including, for instance, high level
service and message type specification, logical view specification, physical view
specification, BPMN 2.0, enterprise integration patterns. For the ATM case-study, a large
number of diagrams were modelled using SMS (cf. Figure 80).

Figure 80 Overall system / software specification using SMS

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 154 / 187

A collection of diagrams is provided below to show the scope of the coverage. The 1st
diagram is a solution for the identification, authentification and auditing security needs,
for which a number of risks were raised using CORAS (cf. Figure 62). Using the Business
Process Modelling Notation (BPMN) it specifies how a controller (executive or planner) is
given access to his working position (cf. Figure 81). Process modelling can also be
performed at a more detailed operational level (cf. Figure 82).

Figure 81 Staff physical arrival process (BPMN)

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 155 / 187

Figure 82 Aircraft arrival sequencing collaboration (BPMN)

Figure 83 shows the specification of the main ATC centre components (FDPS, RDPS, CWP
and WAN) and the main communications between these components through service
subscriptions.

Figure 83 ATC system architecture

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 156 / 187

With SMS, these services are organised in service portfolios. The approach control
portfolio contains both a description of information domains (in terms of enumerations,
data types and messages) relevant to approach control services, and a description of
service domains (cf. Figure 84).

Figure 84 Approach control service portfolio

Each service of a service domain can then be finely specified in terms of service interface,
operation and parameters (cf. Figure 85).

Figure 85 The electronic hand-over service specification

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 157 / 187

According to the ATM risk assessment performed by SINTEF with CORAS, a number of
unwanted incidents were identified with:

 a list of threat scenarios leading to these unwanted incidents,

 the severity level of each unwanted incident.

At the phase of the development lifecycle at which the CORAS risk assessment study was
performed, the system is not yet designed, so it is impossible to “assess” the likelihood of
the threat scenarios. It is however possible to state likelihoods as constraints on the threat
scenarios so as to make the identified risks acceptable, given the severity of the unwanted
incidents.

Example: the “Unauthorised execution of APP services” stands out as the most severe
unwanted incident, with respect to the “APP service provisioning” goal (i.e. primary asset),
with an overall severity rated “Very high”, and the respective severities on safety, business
and reputation being high, medium and high. There are two threat scenarios leading to
this unwanted incident: “External unauthorized actor gets access to APP control room”
and “External unauthorized actor operates CWP in APP control room”. The likelihood of
those scenarios has been rated respectively “possible” and “rare”, i.e.:

 The likelihood of an external unauthorized actor getting access to APP control room
shall be at most “possible”.

 The likelihood of external unauthorized actor operating the CWP in APP control room
shall be at most “rare”.

These requirements and the like represent the main inputs for the system specification
phase performed herein.

For example, in Figure 81, the Staff physical arrival collaboration (BPMN) was designed
using multiple levels of security checks, to make the likelihoods of the threats as low as
possible, within reasonable costs. For other processes, e.g. the Aircraft arrival sequencing
collaboration (BPMN), as pictured in Figure 82, there is no security measure, as no risks
has been identified here by the CORAS risk assessment study.

Step n°5: System-level risk assessment using Rinforzando
The risk assessment performed here is not redundant with the CORAS risk assessment
because this risk assessment takes as input the system design (in terms of system
requirements). It is assumed at this stage that the system will be implemented as
designed, but this will later need to be checked through qualification actions, e.g. audits.
See deliverable D4.4b for in-depth explanations on the security engineering process and
change management for this specific engineering activity (deliverable D1.3 takes an
operational point of view on the ATM case-study, whereas D4.4b takes a more technical
point of view).

The risk assessment is illustrated herein on two essential elements:

 the staff physical arrival process, which is key to at least three of the security needs
elicited in Step n°2: Security need elicitation, namely:

a. identification and authentication,
b. auditing support,

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 158 / 187

c. secured physical access to equipment,

 the arrival sequencing process.

The staff physical arrival process risk assessment is pictured in Figure 86. It can be seen
that the staff physical arrival process (essential element) is supported by a large number
of “targets”, some of which are equipments (e.g. access control DB, deposit registry,
entry/exit database, metal scanning gate, etc.), whilst others are people (e.g. security
guard, controllers, operational supervisor). All these elements come from the mainstream
system engineering activity performed using SMS.

Figure 86 Risk assessment on the staff physical arrival process

Figure 81 shows that when these supporting assets are selected in the mainstream system

engineering model, these elements are tagged in the SMS tool with the target symbol ().

The staff physical arrival process is tagged as an essential element ().

Thus, the engineers responsible for the mainstream system engineering design are aware
in real time that these key-elements are in the risk assessment study. This information
may be considered cumbersome, or even confidential. This is why it is also possible to
hide or display the risk assessment tags by activating specific layers in the SMS tool: it may
be envisaged that specific security policies will give the rights to activate those layers only
to specific roles.

Figure 86 shows the damages that can be expected if the staff physical arrival process
malfunctions or fails: the staff may not be able to enter to take its shift, dangerous items
(e.g. bombs) can be deposited, non-staff personal may be admitted with staff permissions,
or auditable data (e.g. entrance and deposit registry) may not be up-to-date. A risk exists
when there is a conjunction of threats on targets and feared events (or damages) on
essential elements.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 159 / 187

Figure 86 shows only two threats: the corruption of data and the disclosure of confidential
data. The analysis of the corruption of data threat shows that the security guard is
involved in all scenarios (cf. Figure 87), because his complicity is required at all times.
Thus, a risk exists with respect to the impossibility of auditing, especially in case of a
security incident. This risk was assessed as tolerable, but it was still decided to reduce it:

this is modelled as a security objective () in Figure 86.

Figure 87 Corruption of data threat scenario

As a result, two security requirements are added: one related to more equipment (i.e.
install a CCTV) and one related to a procedure (i.e. provide specific information and
training on audits to security guards). With respect to the arrival sequencing process, the
risk assessment (cf. Figure 88) shows one damage (i.e. inefficient runway usage – with a
“medium” impact), and one threat (i.e. an ATCO intentionally sub-optimises the
sequencing – with a “rare” likelihood). The risk is thus negligible, and therefore there is no
attached security objective.

Figure 88 Risk assessment on the arrival sequencing process

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 160 / 187

Step n°7: Detailed design using Papyrus
This step refines the specification carried out in step 4. For example we developed a UML
activity diagram (see Figure 89) refining the arrival for the TCC, which is part of the BPMN
process in Figure 81. The diagram was developed with Papyrus UML. Notes above the
diagram indicate actors and activities are aligned with the note of their actor.

Figure 89 Activity diagram for the physical arrival of the TCC

Upon arrival, the TCC goes through a security check involving the identification and the
deposit of unauthorized items, before being allowed to proceed to the control room. This
model can then be analysed using UMLsec.

Step n°8: Formal verification of the security properties using UMLsec
Several security properties of the process in Figure 89 may be expressed in terms of
UMLsec analyses:

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 161 / 187

 Identification: ensure that the TCC is properly identified.

 Auditing: ensure that some specific actions in the process can be traced.

We demonstrate how several UMLsec analyses can help verify that the process has those
properties. Each property is encoded into a conjunction of UMLsec analyses:

Identification means that the TCC is only allowed to work after going through several
identification steps, and that the only outcomes of any identification step are to proceed to
the next step or to exit the area. This is guaranteed by the conjunction of the following
UMLsec analyses:

 Fair exchange with {start = Go through security checks} and {stop = Check staff
identification} ensures the TCC will be checked as a member of staff.

 Fair exchange with {start = Check staff identification} and {stop = Check for metal, Exit
building} ensures that members of staff will be checked for metal and the others will
leave the building.

 Fair exchange with {start = Check for metal} and {stop = Go to control room, Exit
building} ensures that members of staff carrying unauthorized items will exit the
building while the others will proceed to the control room.

 Fair exchange with {start = Go to control room} and {stop = Check badge
authorizations} ensures that any path to the control room is protected by a badge
check.

 Fair exchange with {start = Check badge authorizations} and {stop = Open control
room, Call security guard} ensures that all staff members attempting to enter the
control room will either succeed or be escorted out by a security guard.

 Fair exchange with {start = Open control room} and {stop = Acknowledge colleagues}
ensures that all staff members entering the control room will need to be
acknowledged by their colleagues.

 Fair exchange with {start = Open control room} and {stop = Check shift schedule}
ensures that all staff members entering the control room will need to be checked
against the schedule.

 Provable with {cert = TCC/PLC ready for work} each one of {Check staff identification,
Check for metal, Check badge authorizations, Acknowledge colleagues, Check shift
schedule} for {action} ensures that all the identification steps must have been passed
before the TCC is allowed to work.

 Rbac with {"Check staff identification, Check for metal"}⊆{"protected"}, {("Check staff
identification" ,"Security guard"),("Check for metal”, “Security guard")}⊆{"right"}, and
{("Security guard”, “Security guard")}⊆{"role"} ensures that only the security guard
can check the identification and the presence of metal.

 Rbac with {"Check shift schedule"}⊆{"protected"}, {("Check shift schedule”, “Shift
manager")}⊆{"right"}, and {("Shift manager”, “Operational supervisor")}⊆{"role"}
ensures that only the supervisor can check the shift schedule.

Auditing means that some operations must be logged, and that the integrity of the log
must be guaranteed. Here is an example for the staff identification:

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 162 / 187

 Fair exchange with {start = Check identification} and {stop = Log entry/exit} ensures
that all staff identifications are logged.

 Provable with {action = Check staff identification} and {cert = Log entry/exit} ensures
that logging of an entry or exit may only take place after a staff identification has been
performed.

 Rbac with {"Log entry/exit"}⊆{"protected"}, {("Log entry/exit" ,"Security guard"
)}⊆{"right"}, and {("Security guard”, “Security guard")}⊆{"role"} ensures that only the
security guard can log entries and exits.

It can be seen here that some seemingly simple security properties can only be completely
verified by a combination of checks using UMLsec, and that this combination is not
straightforward.

Interation n°2: The system “to be”

This section presents the risk modelling resulting from the risk identification that was
conducted as the 3rd step of the 2nd iteration, i.e. after the system changes of the AMAN
introduction. This step is conducted with respect to the SI* models of the 1st step of the 2nd
iteration, as well as the security needs that were elicited during the 2nd step. At the same
time the CORAS risk identification and modelling builds on the CORAS risk models from
the 1st iteration updating these according to changes to the risk picture, and also takes into
account new knowledge gained from the system specification and design during the 1st
iteration. One part of the risk identification and estimation after the changes is to conduct
a systematic walkthrough of the risk models before change to determine whether these
are affected by the changes either by changes to the risk levels or by parts of the risk
picture becoming obsolete. Another part is to identify and assess new risks that may arise.
The CORAS risk modelling language for changing risks supports the explicit modelling of
such changes. Risk that become obsolete are represented in grey colour, risks that are
present both before and after changes are represented by two-layered icons, whereas
risks that arise are represented by regular, coloured CORAS icons. Moreover, changes in
risk levels are captured by pairs of likelihoods and pairs of consequences for the before-
after icons, where the former value of the pair denotes the value before the changes and
the latter denotes the value after the changes. The general structure of the risk assessment
after change is as for the risk assessment before change. We will therefore not repeat and
explain the full process. We rather focus on the changes and how these are handled and
modelled.

Security Needs after Change
The security needs are as before changes except for the addition of one security need,
namely confidentiality. This is due to a concern about State Flight information that after
the AMAN introduction needs to be managed electronically since the data needs to be
processed by the AMAN. Before the AMAN it was only the ATCOs that required knowing
about this sensitive data. After the AMAN introduction the System Flight Plan (SFPL) is
modified to carry this information.

Threat Diagrams after Change
In the following we present the CORAS threat diagrams completed with likelihood and
consequence estimates. The asset APP service provisioning is still considered, while the
new asset State Flight information is introduced. The scales for likelihoods and

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 163 / 187

consequences are as before, as are also the risk matrix and risk evaluation criteria. As
shown by Figure 90, the unwanted incidents with respect to insufficient identification
and/or authentication in the APP control room, as well as secured physical access, are
persistent under change. However, the threat scenario of an external unauthorized actor
accessing the APP control room is considered to decrease in likelihood as is shown by the
shift from Possible to Rare. This decrease is due to the documentation of the staff physical
arrival as part of the system specification using SMS during the 1st iteration. Because Rare
is the lowest likelihood value the likelihood of the unwanted incident Unauthorized
execution of APP services does not change, although it can be assumed that it is even lower
as before. It is only if the unwanted incident can be completely discharged that it becomes
obsolete and removed from the risk model; in that case the likelihood is considered as
being zero.

Figure 90 Identification and authentication, physical access and auditing

Similarly, Figure 91 shows the changes to the risks related to identification and
authentication, as well as auditing, regarding the technical room. In this case all threat
scenarios related to unauthorized access of external actor are considered as being Rare,
two scenarios dropping from the likelihood Possible before the changes.

Figure 91 Identification and authentication and auditing: Technical room

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 164 / 187

The remaining risks from the 1st iteration before the changes are considered as not being
affected by the changes, and therefore remain the same, both in terms of threat scenarios
and likelihood and consequence estimates. We do therefore not show these diagrams
again here.

Figure 92 on the other hand shows an unwanted incident that may occur after the
changes. Because State Flight information now must be processed by the AMAN, it is
managed electronically and carried by the System Flight Plan (SFPL) and may therefore be
available to unauthorized personnel via the wide area network (WAN). The identified
vulnerabilities are insufficient access control with respect to the WAN, as well as
insufficient application of the need-to-know (NtK) principle with respect to the
information carried by the SFPL.

Figure 92 Confidentiality of State Flight information

Risk Evaluation after Change
The evaluation of the identified risks with respect to the risk evaluation criteria are
documented by means of CORAS threat diagrams. Because the levels of the risks before the
changes are the same also after changes, we do not repeat these risk diagrams here. Figure
93 show the evaluation of the risk that is due to the new unwanted incident that was
identified with respect to confidentiality of State Flight information.

Figure 93 Risk evaluation

System / software specification using SMS
The main change introduced in iteration n°2 with respect to iteration n°1 is the
introduction of an Arrival Manager (AMAN). This mainly affects the arrival sequencing
process.

The arrival sequencing in its “as is” version was described in Figure 82. On that figure, it is
possible to see that the arrival sequencing is a collaboration between the TCC and the PLC
supported by three equipments: a controller working position (CWP), a flight data
processing sub-system (FDPS), and a surveillance sub-system. This collaboration (in the
BPMN meaning) is completely revised with the introduction of the AMAN.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 165 / 187

The AMAN process (Description freely inspired from “Arrival management with required
navigation performance and 3D paths”, by Aslaug Haraldsdottir, Julien Scharl, Matthew E.
Berge, Ewald G. Schoemig, Michael L. Coats, Boeing Commercial Airplanes, presented at
the 7th US/Europe ATM R&D Seminar, Barcelona, Spain, July 2-5, 2007) consists of three
main tasks (cf. Figure 94):

 The Trajectory Prediction uses a model of aircraft performance to predict the
Estimated Time of Arrival (ETA) of each aircraft at the meter fix and at the runway.
The perfect trajectory prediction is degraded to represent several key prediction error
factors (e.g. wind, temperature, aircraft position).

 The Traffic Scheduling is capable of optimising arrival sequences and schedules in the
presence of a discrete delay field, which is a product of the discrete paths and speeds
that are used for delay absorption. The Traffic Scheduling is typically executed every 2
minutes and includes all aircraft that fall inside the planning horizon and upstream of
the freeze horizon. It produces an arrival schedule that minimizes delay, subject to
minimum in-trail spacing requirements at the runway and at each meter fix. The
output consists of Scheduled Times of Arrival (STA) for each aircraft in the planning
horizon at the runway and at the meter fix.

 The Trajectory Selection. Each STA is either equal to the ETA, if no spacing conflicts
are present, or larger than the ETA by the required delay. Associated with each delay
value is a particular path and speed combination. The Trajectory Selection task
searches through the set of delay values to determine the path and speed combination
that implements the required delay.

Figure 94 The automated arrival sequencing process

The tasks of the PLC and TCC are of course reorganised to cope with the new AMAN tool.
The new collaboration is shown in Figure 95. This time, the TCC and PLC processes are not
detailed, as the focus is on the AMAN and its interactions and because the SI* models have
already highlighted the main operational changes for the personnel.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 166 / 187

Figure 95 The automated arrival sequencing collaboration

To optimise the traffic scheduling, the AMAN requires having aircraft priorities, in
particular with respect to State Flights. This has major consequences on the overall
architecture. Let us first make a couple of assumptions on the “as is” system:

 The “State Flight” information was not managed electronically, as only the ATCOs
required knowing about this sensitive data. Since the data is to be processed by the
AMAN in the “to be” system, the System Flight Plan (SFPL) is now modified to carry
this information.

 The HMI provided in the technical supervision room was identical to the controller
working position (CWP), giving the technical supervisor an exact replica of what was
happening in the control room. To preserve the confidentiality of the “State Flight”
information, a new HMI called “Technical Supervision HMI” is now derived from the
CWP, which is a downgraded version of the CWP in which confidential data is not
shown.

Overall, the AMAN introduction has major impacts on the service architecture and
component architecture.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 167 / 187

Figure 96 Adding the “State Flight” information

Figure 97 Approach control service portfolio, after AMAN introduction

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 168 / 187

Figure 98 ATC system architecture after introduction of AMAN

System-level risk assessment using Rinforzando
When starting the second iteration of the risk assessment study, one of the very first steps
is to use the “Essential Element(s)” import tool to scan the mainstream system
engineering model and see what is new since the last risk assessment study. The import
security concept window for primary assets after the introduction of the AMAN in the
mainstream system engineering tool, it can be seen that:

 The “Arrival Sequencing” collaboration has already been selected as a primary asset in
the previous risk assessment study (because its name is written in blue), and,

 A new “Arrival Sequencing with AMAN” collaboration has been introduced, which has
not yet been selected as a primary asset in the current risk assessment study (because
its name is written in black).

Figure 99 The import security concept window

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 169 / 187

First, the supporting assets are identified. All the “old” arrival sequencing collaboration
supporting assets are also supporting assets of the “new” arrival sequencing with AMAN
collaboration, however they are not quite de same. The new AMAN subsumes modified
equipments (e.g. surveillance and flight data systems), but also controllers specifically
trained for the use of the AMAN. Therefore, even thought a TCC and PLC may be
mentioned in both collaborations under the same names, they do not refer to the same
“objects”. This can clearly be seen in Figure 100, the import security concept window for
supporting assets after the introduction of the AMAN in the mainstream system
engineering tool, in which the supporting assets can now be selected as sub-elements of
the collaboration, and not as independent elements. In addition, there are many more
supporting assets, e.g. the AMAN itself, but also a meteorological data server, a database
for the aircraft performance model (BADA) – The Base of Aircraft Data (BADA) is a
database being maintained and developed by the EUROCONTROL Validation
Infrastructure Centre of Expertise located at EUROCONTROL Experimental Centre (EEC)
in Brétigny-sur-Orge, France – a prediction error database based on statistical data.

Figure 100 The import security concept window

Unlike the supporting assets, the feared events can be shared between the two versions of
the collaboration. Here, it is the case for the “Inefficient runway usage”. The related risk,
which is different from the former, is still considered as negligible. During the previous
“acquisition” steps, an issue was raised related to the confidentiality of the “State Flight”
information. During the design, a solution was proposed with the “Technical Supervision
HMI”. However, to limit the costs, the messaging was unchanged, i.e. the confidential data
is still available from the network, in particular the wide area network (WAN).

Figure 101 shows a threat scenario in which a technical engineering sniffs the WAN in
order to retreive the confidential “State Flight” information. Alone, this threat scenario is
not critical. However, if this technical engineering provides this confidential information
to a malevolent external actor (e.g. terrorist), then the outcome might be very severe. The
internal actors are somehow trusted, due to a necessary accreditation process before
being recruited. However, they can be fooled, or bribed, to deliver confidential data to
malevolent external actors.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 170 / 187

Figure 101 Attack method for dishonest compromise of flight data

The overall risk assessment for the new arrival sequencing with the AMAN is shown in
Figure 102. The risk “Terrorist attack on State Flight” is retained (orange colour), and
therefore a security objective is defined for that risk. The proposed security objective is to
prevent WAN sniffing by technical staff.

Figure 102 Overall risk assessment

This security objective will be provided to the mainstream system engineering team.
Multiple design solutions might be envisaged to cover that security objective, e.g. crypt the
confidential data, keep confidential data only on the LAN and not sent it to the WAN, etc.
This creates a loop in the engineering process. A new risk assessment will need to be
performed after the mainstream system engineering team has devised a suitable security
control for that risk.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 171 / 187

F. HOMES Validation Plan

WP Artefact Contact Version Date of
Availability

Starting
Date

Action Description

WP2 SeAAS
implementation

UIB n./a. Already
available

Expected
: first half

of May

Validatio
n test of

the
integrate
d SeAAS
solution

Workshop to check the SeAAS
in the actual HOMES
prototype, once available. The
validation will be carried out
by TID with some instructions
from UIB (basic test plan).
Physical meeting is not
required.

Change Patterns
methodology and

tools

KUL n./a. Methodolo
gy already
available.

Tool
available by
March 1st

2nd half
of May

Validatio
n

Worksho
p

Replicate the study already
performed by KUL researchers,
on a smaller scale, with
Telefonica engineers.
Evolution scenarios should
relate to the HOMES case
study.

WP5 Risk assessment
method & Risk

modelling
language

SINTEF n./a. Already
available

n./a. no
planned
action

HOMES is a secondary
application scenario for these
assets. They will be validated
in ATM and there is no real
need to perform another
validation actio in HOMES
since there are no relevant
differences justifying it. WP5
artifacts are rahter use case-
independent.

WP6 SxC technique for
OSGi bundles

UNITN Alpha May-June
2011

May-June First
Validatio

n
workshop

Joint workshop between
UNITN (technique delvelopers)
and TID (technique users) with
the goal of teach users to use
the technique. TID shall
validate the technique from
different points of view, as
reflected in the validation
criteria. Physical meeting is not
mandatory but some
instructions from UNITN to
follow the proper steps by TID
staff.

Beta October
2011

October -
Novembe

r

Second
Validatio

n
workshop

(if
needed)

Same as the first one but with
the beta version. I will be
carried out just if really needed

VeriFast: an off-
device modular
program verifier

KUL v10.6 Already
available

After the
2nd

review

Validatio
n test of
VeriFast

tool

TID to receive the tool and
carry out a full analysis of the
HOMES security module (PEP).
TID shall validate the
technique from different
points of view, as reflected in
the validation criteria. The
workshop may not be
presential but just prepared by
KUL and conducted by TID.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 172 / 187

WP7 TTS language and
methodology

UIB n./a. Already
available

n./a. Training
and

Validatio
n session

UIB shall provide learning
material to TID to let them get
it touch wiht TTS language and
methodology in a practical
way. Also, a basic trial script is
needed to carry out the
validation tests

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 173 / 187

G. HOMES/WP2 Change Patterns

In deliverable “D2.1 - An architectural blueprint and a software development process for
security-critical lifelong systems”, an approach is presented to support the architect of a
system with preparing the architecture for certain foreseen classes of changes, such that
these changes can later be applied with minimal impact. The approach makes use of so-
called `change patterns’, and a catalog of change patterns is included for dealing with
evolving trust relationships.

Each change pattern consists of a change scenario, expressed using template requirement
models of the situation before and after the change that is captured by the pattern.
Furthermore, each pattern has one or more solutions attached. Each solution consists of an
architectural template, which has to be instantiated during the preparation of the
architecture, and guidance to follow when the change described in the change scenario
actually occurs. For more information about the patterns, we refer to deliverable D2.1.

A validation exercise of this approach was performed in the context of the HOMES case
study. In the exercise, two participants from the industrial project partner independently
applied the proposed approach to the HOMES case study.

The goal of the exercise was to evaluate the industrial applicability of the approach, and to
identify possible future improvements to the approach. This document describes the
setup, execution and results of this exercise.

Design and setup

The exercise consists of four phases. Each of these phases is explained in the following
subsections. In summary, during the study phase the participants studied the change
patterns approach together with the necessary background (i.e. the UML and Si* modelling
languages). In the setup phase, the necessary material for the exercise was created based
on input from the participants and the researchers. During the execution phase, the
participants autonomously applied the change patterns approach, which consists of
preparing the architecture of the case study for two given evolution scenarios, and
afterwards evolving the architecture for one of them. Finally, in the follow-up phase, the
participants responded to a questionnaire and participated in an interview.

Study phase
In this phase, the participants from the industrial partner studied the necessary
background information to perform the exercise. The provided study material consisted of
(1) a set of slides about the relevant portions of UML (namely component, composite
structure and deployment diagrams); (2) a textual tutorial and slides about Si* (and i* on
which Si* is based); (3) the textual description about the change patterns concepts and
approach, as given in deliverable D2.1, complemented with slides summarizing the
approach; and (4) the catalog of change patterns to be used during the execution phase, as
given in deliverable D2.1. The material about UML served as a summary, as UML was
already known to the participants beforehand. The other material was new for them.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 174 / 187

Setup phase
In the setup phase, the industrial partner created a UML description of the case study’s
architecture. The research partner then defined a corresponding requirements model
expressed in Si*. These models define the initial situation on which the exercise is based. A
description of these models is included in appendix Error! Reference source not
found.. All models were shared with the industry partner before the execution phase
started, in order to identify and remove any remaining problems.

Based on the models, the research partner also defined the assignment for the exercise,
consisting of two evolution scenarios to be implemented during the execution phase. The
description of these scenarios is given in the Assignment section.

Execution phase
The execution phase was executed in the form of a video conference. At the start of this
phase, a short presentation about the change patterns approach was given to refresh the
participants’ memory and to answer any remaining questions.

The researchers could continuously monitor the participants using a webcam, and
simultaneously track the performed actions using screen sharing software. During the
exercise, the researchers created an event log (e.g. noting down questions that were asked,
actions that were undertaken or difficulties that were encountered).

Two possible evolution scenarios were provided to the industrial partner, for which they
had to prepare the architecture of the case study by applying the change patterns
approach and using the catalog. Each of the scenarios corresponded with a specific pattern
from the catalog, but this information was not shared with the participants.

Finally, the participants were asked to evolve one of the two scenarios.

Follow-up phase
After the execution phase, the participants were given a questionnaire to rate their
experiences with the approach. Later, a follow-up interview was conducted with each of
the participants, to clarify their responses to the questionnaire and to provide additional
feedback. The questions from the questionnaire together with the answers from the
participants are given in section Questionnaire.

Results

The goal of this validation exercise is to explore whether the change patterns approach is
suitable for industrial adoption, and to pinpoint the issues that might hinder this. To be
industrially applicable, (1) the effort required from software engineers to learn the
approach should be acceptable; (2) the methodology to apply the change patterns should
be clear and sound; and (3) the provided catalog of change patterns should be clear and
valuable for the user. In the following subsections, the results of the exercise with respect
to these three aspects are discussed.

Learning curve

Both participants did not have any prior knowledge about the change pattern approach or
the Si* methodology, but were already familiar with UML. This profile is typical for
software engineers working in an industrial context.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 175 / 187

The participants reported a study time from 5 to 6 hours, which includes the time to study
the change patterns approach and the Si* methodology, the time needed to refresh the
relevant parts of UML, and the time spent installing and experimenting with the tool that
was used. The participants have acquired the necessary knowledge in an off-line and
autonomous manner (with the exception of the short summarizing presentation at the
start of the execution phase). Hence, it can be concluded that the total time for learning the
approach, including its dependencies, is acceptable for software engineers.

In the follow-up interview, one participant indicated that the training was insufficient:
while the concepts were clear after studying the provided documentation, some practical
experience with the approach was found necessary in order to apply it correctly.

Methodology

The execution phase of the exercise lasted about 2 hours. In general, both participants
were able to successfully apply the approach. For both scenarios, the participants selected
the correct pattern from the catalog and correctly instantiated a solution.

In the follow-up interview, it was indicated that most problems that were encountered
during the exercise are related to the operation of the graphical editors in the tool. The
reported problems with the approach itself are the uncertainty about whether a selected
pattern is actually the correct one (although both participants eventually selected the
correct pattern) and the difficulty of selecting between the alternative solutions for a
single pattern.

Furthermore, one of the participants remarked that relying on a catalog with a predefined
set of solutions could prevent out-of-the-box thinking, as the range of solutions that are
considered for a problem may be limited to the ones in the catalog. On the other hand, this
participant acknowledges, the value of the catalog is not to provide every possible
solution, but to remind the reader of solutions that have proven to work in the past.
Therefore, each solution should be carefully examined in the context of the system before
applying it, and it may be necessary to come up with a solution that is not in the catalog.

Overall, the answers to the questionnaire (in particular questions B.2 and B.5) show that
both participants found the change patterns approach useful and think it can be successful
in an industrial context.

Pattern catalog

In the follow-up interview, one participant remarked that the catalog provides sufficient
support for dealing with changing trust relationships, but it should cover additional types
of change (besides changing trust relationships) before industrial adoption would be
considered.

Furthermore, to alleviate the difficulty of selecting between the alternative solutions of a
pattern, the description of the pattern should include more information about the trade-
offs (benefits and drawbacks) for each of the solutions that are proposed. Also, both
participants indicated that the distinction between the preparation and evolution part of
each solution in the catalog should be made more explicit.

In terms of tool support, the availability of an electronic version of the catalog (integrated
in the tool) was suggested by both participants.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 176 / 187

Initial situation models

Initial situation description
For this experiment, the main actor (and thus the system of interest) is the home gateway.
Three other actors are interacting with the gateway: the client devices (operated by
users), the service providers and the operator system.

We focus on a single service provider that offers news feeds to the client devices via the
home gateway. We assume that the feed service provides personalized feeds to the clients,
depending on the user's interest and preferences. Besides the general news feeds, which
are free, the feed service provider also offers feeds that are manually selected and
redacted by employees of the feed service. To gain access to these feeds, the client has to
pay a monthly fee. Hence, the service provider needs to identify its users in order to
perform access control to these feeds (this assumption is only made in the context of this
experiment, and is not necessarily part of the prototype implementation).

Si* requirements model
The Si* diagram of the initial situation is given in Figure 103. The client wants to obtain
(personalized) news feed entries from the service provider. The execution of this task is
delegated to the home gateway, which in turn relies on the feed service provider for the
execution.

Figure 103 Si* Diagram of the initial situation

To return the requested feed entries, the service provider verifies the client's identity by
means of the provided credentials. To avoid repeated entry of the credentials by the user
on his client device, the home gateway can cache the credentials. The client, by enabling
this functionality, gives permission to the gateway to store and use the credentials for
accessing the feed service. Also, the client trusts the gateway in that it will not abuse these
credentials.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 177 / 187

Furthermore, both the gateway and the service provider are responsible for enforcing the
security policies that are stored at the operator. Therefore, they need to obtain the policies
from the operator. One of the policies that can be enforced is the execution of a (fair) non-
repudiation protocol, using a trusted third party (TTP). The operator plays the role of this
TTP. This non-repudiation protocol establishes the trust relationship between the home
gateway and service provider regarding the delivery of news feeds.

UML Architecture
The initial architecture of the case study is shown as a UML component and deployment
diagram in Figure 104 and Figure 105, respectively.

The gateway contains a feed gateway component (i.e., OSGi bundle) for obtaining the feeds
from the service provider and offering them to the client. Both the gateway and the
provider contain security-as-a-service (SeAAS) components to enforce the security
policies, including component for executing a fair non-repudiation protocol, and a
component (CFX) to intercept requests and evaluate them against the security policies.
The policies are obtained from a component located at the operator. Additionally, a
component to act as a trusted third party for the non-repudiation protocol is deployed at
the operator side.

Figure 104 UML Component diagram of the initial situation

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 178 / 187

Figure 105 UML Deployment diagram of the initial situation

Assignment

Task
1. Start the exercise from a clean version of the initial UML architecture and Si*

requirement models.

2. Select and instantiate the preparation for scenario 1 described below using the change
pattern catalog, starting from the initial situation and corresponding models. Update
both the UML and Si* models.

3. Select and instantiate the preparation for scenario 2 described below using the change
pattern catalog, starting from the result of the previous step. Update both the UML and
Si* models.

4. Evolve (implement) the scenario that you are told to implement (i.e., corresponding to
that scenario becoming real) on the result of the previous step. Update both the UML
and Si* models.

Scenario 1
The users gave permission to the home gateway to cache the credentials for the feed
service, as shown in the figure below. They also trust the gateway device to not abuse
these credentials.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 179 / 187

However, in the future, it is conceivable that some users may lose their trust in the
gateway device with regard to this permission. For example, a malicious piece of software
could use the gateway to obtain access to the paid feeds without the user's consent. This
new situation is depicted below.

Although the scenario is unlikely in the current setup, it may happen in the future (e.g.,
when more third parties can install their bundles on the gateway). Therefore, the
architecture of the gateway should be prepared such that a low-impact solution to this
trust problem can be instantiated in the future.

Scenario 2
Users currently can only use their own gateway for accessing the feed service. Most likely,
a user will trust his/her own gateway, as shown below.

However, with mobile devices as clients, it is expected that users will want to access their
feeds at all times, also when they are at another place, for example at a friend's house
(roaming). In this case, there is no longer a trust relationship with the home gateway for
providing the news feed service. For instance, a user may fear that the untrusted gateway
will request more (paid) feeds than the user wants. This situation is shown below.

While the roaming scenario is currently not foreseen to be deployed, it is possibly going to
be deployed in the future. Therefore, the architecture of the gateway should be prepared
such that a low-impact solution to this trust problem can be instantiated in the future.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 180 / 187

Questionnaire

Question Participant 1 Participant 2

A. Understanding and difficulty

A.1.1. Rate your understanding of the scenario
descriptions. – Scenario 1

○ Very unclear
○ Unclear
○ Average
● Clear
○ Very clear

○ Very unclear
○ Unclear
○ Average
● Clear
○ Very clear

A.1.2. Rate your understanding of the scenario
descriptions. – Scenario 2

○ Very unclear
○ Unclear
○ Average
● Clear
○ Very clear

○ Very unclear
○ Unclear
○ Average
● Clear
○ Very clear

A.2.1. Rate the difficulty for each of the scenarios
you had to perform. – Scenario 1

○ Very hard
○ Hard
● Average
○ Easy
○ Very easy

○ Very hard
○ Hard
● Average
○ Easy
○ Very easy

A.2.2. Rate the difficulty for each of the scenarios
you had to perform. – Scenario 2

○ Very hard
○ Hard
● Average
○ Easy
○ Very easy

○ Very hard
● Hard
○ Average
○ Easy
○ Very easy

A.3. Rate your understanding of the change
patterns approach (after studying the provided
material and given presentation)

○ Very unclear
○ Unclear
○ Average
● Clear
○ Very clear

○ Very unclear
○ Unclear
○ Average
● Clear
○ Very clear

B. Approach

For each of the following statements, indicate to what extent you agree or disagree with
them.

B.1. The change patterns approach puts too many
constraints on the designer.

○ Strongly
disagree
● Disagree
○ Neutral
○ Agree
○ Strongly agree

○ Strongly
disagree
○ Disagree
● Neutral
○ Agree
○ Strongly agree

B.2. The change patterns approach can be
successful in an industrial context.

○ Strongly
disagree
○ Disagree
○ Neutral
● Agree
○ Strongly agree

○ Strongly
disagree
○ Disagree
○ Neutral
● Agree
○ Strongly agree

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 181 / 187

B.3. The change patterns approach leads to
blindly applying patterns without careful
consideration.

○ Strongly
disagree
● Disagree
○ Neutral
○ Agree
○ Strongly agree

○ Strongly
disagree
○ Disagree
● Neutral
○ Agree
○ Strongly agree

B.4. It is difficult to map the templates provided in
the pattern descriptions to the actual system.

○ Strongly
disagree
● Disagree
○ Neutral
○ Agree
○ Strongly agree

○ Strongly
disagree
● Disagree
○ Neutral
○ Agree
○ Strongly agree

B.5. Overall, the change patterns approach is
useful.

○ Strongly
disagree
○ Disagree
○ Neutral
● Agree
○ Strongly agree

○ Strongly
disagree
○ Disagree
○ Neutral
○ Agree
● Strongly agree

C. Pattern catalog

For each of the following statements, indicate to what extent you agree or disagree with
them.

C.1. The change pattern catalog is large enough. ○ Strongly
disagree
○ Disagree
● Neutral
○ Agree
○ Strongly agree

○ Strongly
disagree
○ Disagree
○ Neutral
● Agree
○ Strongly agree

C.2. The change pattern catalog provides
alternative solutions that you would not consider
otherwise.

○ Strongly
disagree
○ Disagree
● Neutral
○ Agree
○ Strongly agree

○ Strongly
disagree
○ Disagree
○ Neutral
● Agree
○ Strongly agree

C.3. The change pattern catalog is hard to
understand.

○ Strongly
disagree
● Disagree
○ Neutral
○ Agree
○ Strongly agree

○ Strongly
disagree
● Disagree
○ Neutral
○ Agree
○ Strongly agree

C.4. The description os the change patterns in the
catalog is clear and understandable.

○ Strongly
disagree
○ Disagree
○ Neutral
● Agree
○ Strongly agree

○ Strongly
disagree
○ Disagree
○ Neutral
● Agree
○ Strongly agree

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 182 / 187

C.5. The solutions proposed in the change pattern
catalog are trivial.

○ Strongly
disagree
● Disagree
○ Neutral
○ Agree
○ Strongly agree

○ Strongly
disagree
● Disagree
○ Neutral
○ Agree
○ Strongly agree

C.6. The distinction between preparation and
evolution is clear in the change pattern
descriptions.

○ Strongly
disagree
● Disagree
○ Neutral
○ Agree
○ Strongly agree

● Strongly
disagree
○ Disagree
○ Neutral
○ Agree
○ Strongly agree

C.7. The solutions in the change pattern catalog
adequately solve the evolution need.

○ Strongly
disagree
○ Disagree
○ Neutral
● Agree
○ Strongly agree

○ Strongly
disagree
○ Disagree
○ Neutral
● Agree
○ Strongly agree

C.8.1. A better solution exists that is not in the
catalog. – for scenario 1

○ Strongly
disagree
○ Disagree
● Neutral
○ Agree
○ Strongly agree

○ Strongly
disagree
● Disagree
○ Neutral
○ Agree
○ Strongly agree

C.8.2. A better solution exists that is not in the
catalog. – for scenario 2

○ Strongly
disagree
○ Disagree
● Neutral
○ Agree
○ Strongly agree

○ Strongly
disagree
● Disagree
○ Neutral
○ Agree
○ Strongly agree

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 183 / 187

H. POPS Valitation Plan

WP Artifact Contact Version delivery
date by

WP

Starting
Date for

evaluation

Action Description

4 UMLseCh tool
+ subset of GP
lifecycle
model

TU-DOR

0.8 Sep. 2011 Validation
workshop

Technical
workshop on the
tool and
evaluation
methodology

Sep-11 Oct. 2011 Tool
evaluation

Evaluating the
tool on the
sample model
provided by TU-
DOR (of
SCP01/02 and
card life-cycle).
Produce final
report.

6
(develo
pment-
time)

VeriFast: an
off-device
modular
program
verifier

KUL 10.6 or
higher

august
2011

Sep. 2011 Tool
evaluation

 Evaluating
Verifast on GTO
applets (JC API
support is
needed)

6 (on-
board)

Information
protection
techniques
(paper work)
for JC applets

INR-LIL N/A august
2011

Sep. 2011 Methodolo
gy
evaluation

Final report on
the methodology

Proof-of-
concept
(prototype)

N/A N/A Feb. 2011 Feasibility
workshop

Discussion on
the feasibility of
on-card
implementation:
technical details
on how to embed
the prototype in
a GTO platform

Alpha may 2011 Jun. 2011 1st
validation
workshop

Feedbacks on
the Alpha
version

Beta Sep-11 Oct. 2011 2nd
validation
workshop

Discussion on
the final
evaluation of the
beta version

Release
candidate

dec 2011 Jan. 2012 Tool
evaluation

Final evaluation
report to be
produced on the
december
delivery

SxC for smart
cards
prototype

UNITN N/A N/A Feb. 2011 Feasibility
workshop

Discussion on
the feasibility of
on-card
implementation:
technical details
on how to embed
the prototype in
a GTO platform

Alpha May Jun. 2011 1st
validation
workshop

Feedbacks on
the Alpha
version

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 184 / 187

Beta Sept Oct. 2011 2nd
validation
workshop

Discussion on
the final
evaluation by
GTO

Release
candidate

Dec Jan. 2012 Methodolo
gy and tool
evaluation

Final evaluation
report on the
tool and the
methodology

7 EvoTest lite INRIA FC
and
Smarttet
sing

1.2 may 2011 June Test model
evaluation

Evaluation of the
usability,
scalability and
relevance of the
test model

 Tool
installation
/ training

Installation of
the tool and
training on its
usage

 June Tool
evaluation

Preliminary
report for the lite
version

 Sep-11 Sep-11 Tool
installation
/ training

Installation of
the additional
components

EvoTest full 1.3 Oct. 2011 Tool
evaluation

Final evaluation
report on the
tool and the
methodology

4 and 6 WP4 and WP6
integration

TU-DOR
INR-LIL

N/A Nov. 2011 Evaluation
of
effectivene
ss

Inconsistencies
detection in
security policy
between model
(WP4) and byte-
codes (WP6):
evaluation is
done on the
materials
provided by two
WPs.

6 and 7 WP6 and WP7
integration

INRIA FC
and
Smarttet
sing NR-
LIL
UNITN

 N/A Evaluation
of
effectivene
ss

Done by the
evaluation of
WP6 and WP7:
no addional
work is needed

4 and 7 WP4 and WP7
integration

INRIA FC
and
Smarttet
sing TU-
DOR

0.8 and 1.3 Nov. 2011 Evaluation
of
effectivene
ss

Export of model
changes from
WP4 to WP7 on
life-cycle
management:
evaluation is
done on the
materails
provided by to
WPs.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 185 / 187

3 and 7 WP3 and WP7
integration

INRIA FC
and
Smarttet
sing
UNITN

3.19 and
1.3

 Jul. 2011 Evaluation
of
effectivene
ss

Evaluating the
integration on a
portion of GP
model:
evaluation is
done on the
materials
provided by two
WPs.

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 186 / 187

I. POPS Details on the evaluation activities

The evaluation has been performed essentially by the team involved in the SecureChange
project in collaboration with the R&D team of GTO in charge of the security of the open
products. Each “evaluator” took the role of the engineer involved in the process : design
engineer, validation engineer, etc. The specific tasks that have been conducted for the
evaluation are:

For the WP7, an adaptation layer has been developed, required for executing the abstract
tests generated by the EvoTest tool on Gemalto's product. Gemalto uses a proprietary test
environment, EVA.NET for all its testing purposes. The goal of this adaption layer is:

 Translate the sequence of operations described in the abstract XML tests into an
effective test script in the language of EVA.NET.

 Provide concrete values for each abstract value in the XML tests.

The adaptation layer is made of the following parts: A converter, which takes as input a
set of XML files and produces a functional EVA.NET validation campaign; An adaptation
layer, which enriches the programmatic library of EVA.NET with procedures and
constants that instantiate the artefacts from the SecureChange Global Platform UML
model; A set of personalization scripts and procedures, that allow to set Gemalto's card
in the same initial state as the one described in the SecureChange Global Platform UML
model.

For the WP6 and the on-board verification, an API layer has been designed and
developed to provide the SxC and IFC checkers with the access to the applet being loaded
as well as some platform data. This API is necessary because the checkers should not learn
information on the platform. The API layer also keeps the Sxc and IFC checkers
independent from the platform. On the other hand, the API allows the chekers to benefit
from some platform's pre-defined memory buffers and then reduce the RAM and NVM
consumption.

The platform's Installer package has been modified to invoke and communicate between
the different components of each checkers. Those components include the Java code that
stores the card security policy and the C code that performs the verification on the newly
loaded applet. The invocation of the checkers is then defined by Java invocation but also
native call between Java and C.

The communication between the components is done using a native temporary buffer that
has no impact on the overall RAM footprint of the integrated mask.

And last but not the least, several XML files has been developed to compile and link the
SxC and IFC checkers source code (both in C and Java) as part of the platform mask. These
XML provides instructions on the compiling and linking order, the place reserved for the
checkers and how they are identified in the final mask.

For the WP6 and the developement-time verification, the following process was used to
perform the applet (phonebook) annotation for the evaluation of the VeriFast tool:

D1.3 Report on the Industrial Validation of SECURECHANGE
Solutions | version 4.3 | page 187 / 187

 For each API used by the applet, and not provided by the VeriFast team, we add
minimal annotations. These minimal annotations are required to run the VeriFast tool.

 For each method of the applet, we put the annotations needed to prove the absence of
NullPointerException. For this we need to specify preconditions and postconditions.
Preconditions are conditions that will need to be enforced every time the method is
called, they are specified using the keyword @requires. Postconditions areconditions
that will need to be enforced every time the method returns, they are specified with
the keyword @ensures. The analysis succeeds if VeriFast is able to prove that those
pre/post conditions are always enforced in the applet.

 For each loop in the applet (for and while), put the annotations needed to prove the
termination of the loop (no infinite loop). For this we need to specify an invariant for
every loop. An invariant is a statement that must be true when entering the loop and
must remain true on every iteration of the loop. The invariants are specified with the
keyword @invariant. The 3 steps above actually have to be completed before running
the analysis or an error will be raised by the tool.

